Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 40489 by ajfour last updated on 22/Jul/18

Commented by ajfour last updated on 22/Jul/18

In terms of radius of circle R,  find a, and b.

IntermsofradiusofcircleR,finda,andb.

Commented by behi83417@gmail.com last updated on 23/Jul/18

BC.AF=AB.CD  cosOAD=(a/b),OD=(√(b^2 −a^2 ))  tgOED=((√(b^2 −a^2 ))/(OE))⇒OE=(√(b^2 −a^2 )).((√(b^2 −a^2 ))/a)=((b^2 −a^2 )/a)  AE=a+((b^2 −a^2 )/a)=(b^2 /a),DE^2 =b^2 −a^2 +(((b^2 −a^2 )^2 )/a^2 )=  =(((b^2 −a^2 )(a^2 +b^2 −a^2 ))/a^2 )⇒DE=(b/a)(√(b^2 −a^2 ))  ((DE)/(EC))=((OE)/(EF))⇒EF=((b^2 −a^2 )/a).(b/((b/a)(√(b^2 −a^2 ))))=(√(b^2 −a^2 ))  (a/b)=((b+BD)/(a+((b^2 −a^2 )/a)+(√(b^2 −a^2 ))))⇒BD=((b^2 +a(√(b^2 −a^2 )))/b)−b  =(a/b)(√(b^2 −a^2 ))  cosBDO=cos(90+EDO)=−sinEDO=  =−((OE)/(ED))=−(((b^2 −a^2 )/a)/((b/a)(√(b^2 −a^2 ))))=−((√(b^2 −a^2 ))/b)  cosBDO=−((√(b^2 −a^2 ))/b)  R^2 =OD^2 +BD^2 −2OD.BD.cosBDO=  =(b^2 −a^2 )+(a^2 /b^2 )(b^2 −a^2 )+2(√(b^2 −a^2 )).(a/b)(√(b^2 −a^2 )).((√(b^2 −a^2 ))/b)=  =(b^2 −a^2 )(1+(a^2 /b^2 )+2(a/b^2 )(√(b^2 −a^2 )))=  =((b^2 −a^2 )/b^2 )(b^2 +a^2 +2a(√(b^2 −a^2 )))  ⇒R=((√(b^2 +a^2 +2a(√(b^2 −a^2 ))))/b).(√(b^2 −a^2 )).  BC.((b^2 +a(√(b^2 −a^2 )))/a)=((b^2 +a(√(b^2 −a^2 )))/b).(b+(b/a)(√(b^2 −a^2 )))  BC=a+(√(b^2 −a^2 )).  OF.BC=R^2 .sinCOB⇒  sinCOB=(((a+(√(b^2 −a^2 )))(((b^2 −a^2 )/a)+(√(b^2 −a^2 ))))/R^2 )=  =(((a+(√(b^2 −a^2 )))^2 .(√(b^2 −a^2 )))/(aR^2 ))

BC.AF=AB.CDcosOAD=ab,OD=b2a2tgOED=b2a2OEOE=b2a2.b2a2a=b2a2aAE=a+b2a2a=b2a,DE2=b2a2+(b2a2)2a2==(b2a2)(a2+b2a2)a2DE=bab2a2DEEC=OEEFEF=b2a2a.bbab2a2=b2a2ab=b+BDa+b2a2a+b2a2BD=b2+ab2a2bb=abb2a2cosBDO=cos(90+EDO)=sinEDO==OEED=b2a2abab2a2=b2a2bcosBDO=b2a2bR2=OD2+BD22OD.BD.cosBDO==(b2a2)+a2b2(b2a2)+2b2a2.abb2a2.b2a2b==(b2a2)(1+a2b2+2ab2b2a2)==b2a2b2(b2+a2+2ab2a2)R=b2+a2+2ab2a2b.b2a2.BC.b2+ab2a2a=b2+ab2a2b.(b+bab2a2)BC=a+b2a2.OF.BC=R2.sinCOBsinCOB=(a+b2a2)(b2a2a+b2a2)R2==(a+b2a2)2.b2a2aR2

Commented by ajfour last updated on 23/Jul/18

Thanks Sir.

ThanksSir.

Answered by ajfour last updated on 23/Jul/18

let ∠OAB=∠ECF =θ  bcos θ = a          ....(i)  AE=bsec θ          Also  CF=BF=bcos θ =a  EF=bsin θ =AF−AE  ⇒   bsin θ=acot θ−bsec θ   ..(ii)  OF=(√(R^2 −BF^( 2) )) =(√(R^2 −a^2 ))  OF=OE+EF  ⇒ (√(R^2 −a^2 ))=bsin^2 θ+bsin θ   ..(iii)  using (i) in (ii):  asec θsin θ=acot θ−asec^2 θ  ⇒  tan θ=cot θ−1−tan^2 θ  let  tan θ=m ; then    m^2 =1−m−m^3   or    m^3 +m^2 +m=1  ⇒  m≈ 0.54369  using  (i) in (iii)  (√(R^2 −a^2 ))=asec θsin^2 θ+asec θsin θ                   =atan θ(1+sin θ)  R^2 −a^2 =a^2 m^2 (1+(m/(√(1+m^2 ))))^2   ⇒ a^2 =(R^2 /(1+m^2 (1+(m/(√(1+m^2 ))))^2 ))   ⇒    a ≈ 0.7743R            b=a(√(1+m^2 )) ≈ 0.88R .

letOAB=ECF=θbcosθ=a....(i)AE=bsecθAlsoCF=BF=bcosθ=aEF=bsinθ=AFAEbsinθ=acotθbsecθ..(ii)OF=R2BF2=R2a2OF=OE+EFR2a2=bsin2θ+bsinθ..(iii)using(i)in(ii):asecθsinθ=acotθasec2θtanθ=cotθ1tan2θlettanθ=m;thenm2=1mm3orm3+m2+m=1m0.54369using(i)in(iii)R2a2=asecθsin2θ+asecθsinθ=atanθ(1+sinθ)R2a2=a2m2(1+m1+m2)2a2=R21+m2(1+m1+m2)2a0.7743Rb=a1+m20.88R.

Commented by MJS last updated on 23/Jul/18

I get the same value for θ  so either me or you made a mistake somewhere

Igetthesamevalueforθsoeithermeoryoumadeamistakesomewhere

Answered by MJS last updated on 23/Jul/18

R=1  ∠DAO=∠ECF ⇒ ∣CF∣=∣BF∣=a  ∣OF∣=(√(1−a^2 ))  ∣OD∣=∣BF∣((∣AO∣)/(∣AF∣))=(a^2 /(a+(√(1−a^2 ))))  AB^(⇀) =B−A= (((a+(√(1−a^2 )))),(a) )  CD^(⇀) =D−C= (((−(√(1−a^2 )))),((a((2a+(√(1−a^2 )))/(a+(√(1−a^2 )))))) )  AB^(⇀) ⊥CD^(⇀)   (a+(√(1−a^2 )))(−(√(1−a^2 )))+a^2 ((2a+(√(1−a^2 )))/(a+(√(1−a^2 ))))=0  a^6 −((19)/(17))a^4 +(7/(17))a^2 −(1/(17))=0  a=(√x)  x^3 −((19)/(17))x^2 +(7/(17))x−(1/(17))=0  x=z+((19)/(51))  z^3 −(4/(867))z−((1172)/(132651))=0  z≈.214167  x≈.586716  a≈.765974  ∣OD∣≈.416452  b≈.871865    a≈.765974R  b≈.871865R

R=1DAO=ECFCF∣=∣BF∣=aOF∣=1a2OD∣=∣BFAOAF=a2a+1a2AB=BA=(a+1a2a)CD=DC=(1a2a2a+1a2a+1a2)ABCD(a+1a2)(1a2)+a22a+1a2a+1a2=0a61917a4+717a2117=0a=xx31917x2+717x117=0x=z+1951z34867z1172132651=0z.214167x.586716a.765974OD∣≈.416452b.871865a.765974Rb.871865R

Commented by ajfour last updated on 23/Jul/18

matches close to my answer;  thank you Sir.

matchesclosetomyanswer;thankyouSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com