Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41436 by Raj Singh last updated on 07/Aug/18

Answered by rahul 19 last updated on 07/Aug/18

Check Q. Id 36491

CheckQ.Id36491

Answered by MJS last updated on 07/Aug/18

∫(dx/(x^4 +8x^2 +9))=∫(dx/((x^2 +4−(√7))(x^2 +4+(√7))))=  ((√7)/(14))∫(dx/(x^2 +4−(√7)))−((√7)/(14))∫(dx/(x^2 +4+(√7)))=       [∫(dt/(t^2 +a))=((√a)/a)arctan ((x(√a))/a)]  =(((7(√2)+(√(14)))/(84)))arctan ((((√(14))+(√2))/6)x) −(((7(√2)−(√(14)))/(84)))arctan ((((√(14))−(√2))/6)x) +4c

dxx4+8x2+9=dx(x2+47)(x2+4+7)=714dxx2+47714dxx2+4+7=[dtt2+a=aaarctanxaa]=(72+1484)arctan(14+26x)(721484)arctan(1426x)+4c

Answered by tanmay.chaudhury50@gmail.com last updated on 07/Aug/18

1)∫(dx/(x^4 +8x^2 +9))  =∫(dx/((x^2 )^2 +2.x^2 .4+16−7))  =∫(dx/((x^2 +4)^2 −((√7))^2 ))  =∫(dx/((x^2 +4+(√(7 )) )(x^2 +4−(√7) )))   = (1/(2(√7))){∫(dx/(x^2 +4−(√7)))−∫(dx/(x^2 +4+(√7)))}  =(1/(2(√7))){(1/(√(4−(√7))))tan^(−1) ((x/(√(4−(√7)))))−(1/(√(4+(√7))))tan^(−1) ((x/(√(4+(√7)))))

1)dxx4+8x2+9=dx(x2)2+2.x2.4+167=dx(x2+4)2(7)2=dx(x2+4+7)(x2+47)=127{dxx2+47dxx2+4+7}=127{147tan1(x47)14+7tan1(x4+7)

Answered by tanmay.chaudhury50@gmail.com last updated on 07/Aug/18

2)t^2 =secx+tanx  2tdt=secxtanx+sec^2 xdx=secx(secx+tanx)dx  2tdt=secx(t^2 )dx  ((2dt)/t)=secxdx  sec^2 x−tan^2 x=1  (secx+tanx)(secx−tanx)=1  secx−tanx=(1/t^2 )  secx+tanx=t^2   secx=(1/2)(t^2 +(1/t^2 ))  ∫((sec^2 x)/((secx+tanx)^(9/2) ))dx  ∫((secx.secxdx)/((secx+tanx)^(9/2) ))  ∫(((1/2)(t^2 +(1/t^2 ))×((2dt)/t))/((t^2 )^(9/2) ))  ∫((t^2 +(1/t^2 ))/t^(10) )dt  ∫(t^(−8) +t^(−12) )dt  =(t^(−7) /(−7))+(t^(−11) /(−11))c  =(((secx+tanx)^((−7)/2) )/(−7))+(((secx+tanx)^((−11)/2) )/(−11))+c

2)t2=secx+tanx2tdt=secxtanx+sec2xdx=secx(secx+tanx)dx2tdt=secx(t2)dx2dtt=secxdxsec2xtan2x=1(secx+tanx)(secxtanx)=1secxtanx=1t2secx+tanx=t2secx=12(t2+1t2)sec2x(secx+tanx)92dxsecx.secxdx(secx+tanx)9212(t2+1t2)×2dtt(t2)92t2+1t2t10dt(t8+t12)dt=t77+t1111c=(secx+tanx)727+(secx+tanx)11211+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com