All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 47401 by Aditya789 last updated on 09/Nov/18
Commented by maxmathsup by imad last updated on 10/Nov/18
letA(x)=(cosx)1sinx⇒A(x)=e1sinxln(cosx)butcosx∼1−x22(x→0)⇒ln(cosx)∼ln(1−x22)∼−x22alsosinx∼x⇒A(x)∼e−x2⇒limx→0A(x)=1.
Answered by ajfour last updated on 09/Nov/18
=limx→0[1−(1−cosx)]1/sinx=limx→0{[1−2sin2x2]−1/2sin2(x/2)}−2sin2(x/2)2sin(x/2)cos(x/2)=limx→0e−tan(x/2)=1.
Answered by rahul 19 last updated on 11/Nov/18
elimx→0{(cosx−1)×1sinx}=elimx→0{−tanx2}=e0=1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com