Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 48763 by mr W last updated on 28/Nov/18

Commented by mr W last updated on 28/Nov/18

Find R in terms of a, b, c.

FindRintermsofa,b,c.

Answered by ajfour last updated on 28/Nov/18

Answered by ajfour last updated on 28/Nov/18

Rsin θ = (a/2)  2Rcos (θ+α)=(√(b^2 +c^2 ))  ⇒ 2R(cos θcos α−sin θsin α)=(√(b^2 +c^2 ))  2R(cos θ×(b/(√(b^2 +c^2 )))−(a/(2R))×(c/(√(b^2 +c^2 ))))=(√(b^2 +c^2 ))  ⇒ 2bRcos θ=b^2 +c^2 +ac  or    (4R^2 −a^2 )b^2  = (b^2 +c^2 +ac)^2         4R^2  = a^2 +(((b^2 +c^2 +ac)^2 )/b^2 )       R = (1/2)(√(a^2 +(((b^2 +c^2 +ac)^2 )/b^2 ))) .

Rsinθ=a22Rcos(θ+α)=b2+c22R(cosθcosαsinθsinα)=b2+c22R(cosθ×bb2+c2a2R×cb2+c2)=b2+c22bRcosθ=b2+c2+acor(4R2a2)b2=(b2+c2+ac)24R2=a2+(b2+c2+ac)2b2R=12a2+(b2+c2+ac)2b2.

Commented by mr W last updated on 28/Nov/18

correct! thank you sir!

correct!thankyousir!

Commented by mr W last updated on 28/Nov/18

alternative way:  circumcircle of a triangle with sides:  a  (√(b^2 +c^2 ))  (√(b^2 +(a+c)^2 ))    R=((a(√((b^2 +c^2 )(b^2 +(a+c)^2 ))))/(4A))  A=((ab)/2)  R=((a(√((b^2 +c^2 )(b^2 +(a+c)^2 ))))/(2ab))  ⇒R=((√((b^2 +c^2 )(b^2 +(a+c)^2 )))/(2b))

alternativeway:circumcircleofatrianglewithsides:ab2+c2b2+(a+c)2R=a(b2+c2)(b2+(a+c)2)4AA=ab2R=a(b2+c2)(b2+(a+c)2)2abR=(b2+c2)(b2+(a+c)2)2b

Terms of Service

Privacy Policy

Contact: info@tinkutara.com