Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 48879 by behi83417@gmail.com last updated on 29/Nov/18

Commented by behi83417@gmail.com last updated on 29/Nov/18

ABCD:square with side length=a  let: { (,(p=EF+FG+GH+HE)),(,(q=EF^2 +FG^2 +GH^2 +HE^2 )) :}  find:max &min of: p&q.

ABCD:squarewithsidelength=alet:{p=EF+FG+GH+HEq=EF2+FG2+GH2+HE2find:max&minof:p&q.

Commented by ajfour last updated on 29/Nov/18

Commented by mr W last updated on 29/Nov/18

I guess  p_(max) ⇒4a  p_(min) =2(√2)a  q_(max) ⇒4a^2   q_(min) =2a^2

Iguesspmax4apmin=22aqmax4a2qmin=2a2

Commented by behi83417@gmail.com last updated on 29/Nov/18

q_(max) =4a^2 ,q_(min) =2a^2

qmax=4a2,qmin=2a2

Commented by behi83417@gmail.com last updated on 29/Nov/18

CH=z,DE=t  q=ΣEF^2 =x^2 +(a−t)^2 +y^2 +(a−x)^2 +  +z^2 +(a−y)^2 +t^2 +(a−z)^2   but: x^2 +(a−x)^2 =2x^2 −2ax+a^2   this is max,when x=a and min when  x=(a/2).so:                 (a^2 /2)≤2x^2 −2ax+a^2 ≤a^2         +     (a^2 /2)≤2y^2 −2ay+a^2 ≤a^2  ↓        +     (a^2 /2)≤2z^2 −2az+a^2 ≤a^2  ↓         +    (a^2 /2)≤2t^2 −2at+a^2 ≤a^2  ↓  ................................................  →    4×(a^2 /2)≤    q     ≤4a^2 ⇒2a^2 ≤q≤4a^2  .

CH=z,DE=tq=ΣEF2=x2+(at)2+y2+(ax)2++z2+(ay)2+t2+(az)2but:x2+(ax)2=2x22ax+a2thisismax,whenx=aandminwhenx=a2.so:a222x22ax+a2a2+a222y22ay+a2a2+a222z22az+a2a2+a222t22at+a2a2................................................4×a22q4a22a2q4a2.

Commented by mr W last updated on 29/Nov/18

q_(max) =2×((√2)a)^2 +2×0^2 =4a^2   8a^2  was my typo.

qmax=2×(2a)2+2×02=4a28a2wasmytypo.

Commented by behi83417@gmail.com last updated on 29/Nov/18

you are wellcome sir.  sir!do you have any idea for:p ?

youarewellcomesir.sir!doyouhaveanyideafor:p?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com