Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 49530 by behi83417@gmail.com last updated on 07/Dec/18

Commented by behi83417@gmail.com last updated on 07/Dec/18

△ and △ are equilateral triangles.  AB=4,EG=2(√2)   [or:AB=6,EG=2(√6)]  ⇒     AE=?    ,     ∡AEI=?

andareequilateraltriangles.AB=4,EG=22[or:AB=6,EG=26]AE=?,AEI=?

Commented by mr W last updated on 07/Dec/18

not possible sir!  EG≥AB/2=6/2=3  ⇒with EG=(√6)<3 no solution!

notpossiblesir!EGAB/2=6/2=3withEG=6<3nosolution!

Commented by behi83417@gmail.com last updated on 07/Dec/18

yes sir.you are right.values changed.

yessir.youareright.valueschanged.

Answered by mr W last updated on 07/Dec/18

AE=x  4=x+(x/2)+(√((2(√2))^2 −((((√3)x)/2))^2 ))  4−((3x)/2)=(√(8−((3x^2 )/4)))  8−3x=(√(32−3x^2 ))  64−48x+9x^2 =32−3x^2   8−12x+3x^2 =0  ⇒x=((6±2(√3))/3)=0.845 (or 3.155)  ((sin θ)/x)=((sin 60°)/(2(√2)))  ⇒sin θ=((6−2(√3))/3)×((√3)/(2×2(√2)))=(((√6)−(√2))/4)  ⇒θ=sin^(−1) (((√6)−(√2))/4)=15°  ⇒∠AEI=180°−60°−15°=105°

AE=x4=x+x2+(22)2(3x2)243x2=83x2483x=323x26448x+9x2=323x2812x+3x2=0x=6±233=0.845(or3.155)sinθx=sin60°22sinθ=6233×32×22=624θ=sin1624=15°AEI=180°60°15°=105°

Commented by behi83417@gmail.com last updated on 07/Dec/18

right answer and perfect way.  thank you very much dear master.

rightanswerandperfectway.thankyouverymuchdearmaster.

Answered by behi83417@gmail.com last updated on 07/Dec/18

EG^2 =GB^2 +EB^2 −2GB.EB.cos60  (2(√2))^2 =x^2 +(4−x)^2 −2x(4−x).(1/2)  3x^2 −12x+8=0⇒x=AE=((12±(√(144−96)))/6)  AE=((12±4(√3))/6)=2±(2/(√3)) .[=0.845 ∨ 3.15]  cosAE^� I=(((2(√2))^2 +x^2 −(4−x)^2 )/(4(√2)x))=  =((8+x^2 −x^2 +8x−16)/(4(√2)x))=(√2)(1−(1/x))=  =(√2)(1−(1/(0.845)))=−0.259⇒AE^� I=105^• .

EG2=GB2+EB22GB.EB.cos60(22)2=x2+(4x)22x(4x).123x212x+8=0x=AE=12±144966AE=12±436=2±23.[=0.8453.15]cosAEI=(22)2+x2(4x)242x==8+x2x2+8x1642x=2(11x)==2(110.845)=0.259AEI=105.

Answered by behi83417@gmail.com last updated on 07/Dec/18

3S_(AEI) +S_(EGI) =S_(ABC)   ⇒3×(1/2)x(4−x).((√3)/2)=((√3)/4)(4^2 −8)  ⇒3x^2 −12x+8=0⇒x=((12±(√(144−96)))/6)  ⇒x=AE=((12±4(√3))/6)=2±(2/(√3)) .

3SAEI+SEGI=SABC3×12x(4x).32=34(428)3x212x+8=0x=12±144966x=AE=12±436=2±23.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com