Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50052 by cesar.marval.larez@gmail.com last updated on 13/Dec/18

Commented by maxmathsup by imad last updated on 13/Dec/18

let I = ∫   ((x^(2 ) +2x)/((x+1)^2 ))dx changement x+1 =t give  I = ∫  (((t−1)^2  +2(t−1))/t^2 )dt =∫ ((t^2 −2t +1+2t −2)/t^2 )dt  =∫  ((t^2 −1)/t^2 ) dt =∫  dt −∫  (dt/t^2 ) =t +(1/t) +c ⇒ I =x+1+(1/(x+1)) +c .

letI=x2+2x(x+1)2dxchangementx+1=tgiveI=(t1)2+2(t1)t2dt=t22t+1+2t2t2dt=t21t2dt=dtdtt2=t+1t+cI=x+1+1x+1+c.

Answered by peter frank last updated on 13/Dec/18

4)∫(1/(cosx))dx  cosx=((1−t^2 )/(1+t^2 ))  t=tan (x/2)  dx=((2dt)/(1+t^2 ))  ∫((2dt)/(1−t^2 ))=∫(((1−t)+(1+t))/(1−t^2 ))  =ln ((1+t)/(1−t))+B  ln((1+tan (x/2))/(1−tan (x/2)))=ln [((cos(x/2) +sin (x/2))/(cos (x/2)−sin (x/2)))]⇒(rationalise denominator)  ln [((1+sin x)/(cos x))]+D  ln [secx+tan x]+D

4)1cosxdxcosx=1t21+t2t=tanx2dx=2dt1+t22dt1t2=(1t)+(1+t)1t2=ln1+t1t+Bln1+tanx21tanx2=ln[cosx2+sinx2cosx2sinx2](rationalisedenominator)ln[1+sinxcosx]+Dln[secx+tanx]+D

Commented by maxmathsup by imad last updated on 13/Dec/18

in general let determine ∫  (dx/(cos(ax +b)))   with a≠0  ∫  (dx/(cos(ax+b))) =_(ax+b =t)   ∫    (1/(cos(t))) (dt/a) =(1/a)ln∣tan((t/2) +(π/4))∣ +C  =(1/a)ln∣tan(((ax+b)/2) +(π/4))∣ +C .

ingeneralletdeterminedxcos(ax+b)witha0dxcos(ax+b)=ax+b=t1cos(t)dta=1alntan(t2+π4)+C=1alntan(ax+b2+π4)+C.

Commented by $@ty@m last updated on 13/Dec/18

Pl. see my comment on   Q.No. 40717

Pl.seemycommentonQ.No.40717

Commented by maxmathsup by imad last updated on 13/Dec/18

let I = ∫  (dx/(cosx))  changement  tan((x/2))=t give  I =∫   (1/((1−t^2 )/(1+t2))) ((2dt)/(1+t^2 )) = ∫  ((2dt)/(1−t^2 )) =∫ ((1/(1−t)) +(1/(1+t)))dt  =ln∣((1+t)/(1−t))∣ +c =ln∣((1+tan((x/2)))/(1−tan((x/2))))∣+c =ln∣tan((x/2) +(π/4))∣ +c .

letI=dxcosxchangementtan(x2)=tgiveI=11t21+t22dt1+t2=2dt1t2=(11t+11+t)dt=ln1+t1t+c=ln1+tan(x2)1tan(x2)+c=lntan(x2+π4)+c.

Answered by afachri last updated on 13/Dec/18

(1)  ∫  ((x^2 + 2x)/((x + 1)^2 )) dx   =   ∫  ((x^2 + 2x + 1 − 1)/((x + 1)^2 ))  dx                                                =  ∫  (((x + 1)^2  − 1)/((x + 1)^2 ))  dx   =    ∫  (((x + 1)^2 )/((x + 1)^2 ))   −  (1/((x + 1)^2 ))  dx                                                =  ∫  1   −  (1/((x + 1)^2 )) dx  first :  ∫  (1/((x + 1)^2 )) dx     ⇒      let  u = x + 1                                                            du  =  dx  equation will be   ∫  (1/u^2 ) du  =  ∫  u^(−2)   du  =  −u^(−1)                                                         =  −(1/((x + 1)))  ∴  ∫  1  − (1/((x + 1)^2 )) dx  =  x + (1/((x + 1))) + C

(1)x2+2x(x+1)2dx=x2+2x+11(x+1)2dx=(x+1)21(x+1)2dx=(x+1)2(x+1)21(x+1)2dx=11(x+1)2dxfirst:1(x+1)2dxletu=x+1du=dxequationwillbe1u2du=u2du=u1=1(x+1)11(x+1)2dx=x+1(x+1)+C

Answered by Joel578 last updated on 13/Dec/18

2)  I = ∫ e^(3cos 2x)  . sin 2x dx  u = cos 2x  →  du = −2sin 2x dx    ⇒ I = −(1/2)∫ e^(3u)  du            = −(1/2)((1/3)e^(3u)  + C)            = −(1/6)e^(3cos 2x)  + C

2)I=e3cos2x.sin2xdxu=cos2xdu=2sin2xdxI=12e3udu=12(13e3u+C)=16e3cos2x+C

Answered by Joel578 last updated on 14/Dec/18

3)  I = ∫ (dx/(e^x  + 1))  u = e^x  + 1  →  du = e^x  dx  dx = (du/(u − 1))  I = ∫ (1/u)((du/(u −1))) = ∫ (((−1)/u) + (1/(u − 1))) du      = −ln ∣u∣ + ln ∣u − 1∣ + C      = −ln ∣e^x  + 1∣ + ln ∣e^x ∣ + C      = x − ln ∣e^x  + 1∣ + C

3)I=dxex+1u=ex+1du=exdxdx=duu1I=1u(duu1)=(1u+1u1)du=lnu+lnu1+C=lnex+1+lnex+C=xlnex+1+C

Commented by cesar.marval.larez@gmail.com last updated on 13/Dec/18

thank u everyone

thankueveryone

Commented by afachri last updated on 14/Dec/18

Commented by Joel578 last updated on 14/Dec/18

thank you for correction

thankyouforcorrection

Commented by afachri last updated on 24/Dec/18

your welcome Sir

yourwelcomeSir

Answered by peter frank last updated on 13/Dec/18

3) t=e^x +1⇒e^x =t−1  dt=e^x dx⇒dx=(dt/e^x )  ∫(1/t)(dt/(t−1))=∫((-t+1+t)/(t(t−1)))  −lnt+ln(t−1)+D  −ln (e^x )+ln (e^x −1)+D

3)t=ex+1ex=t1dt=exdxdx=dtex1tdtt1=t+1+tt(t1)lnt+ln(t1)+Dln(ex)+ln(ex1)+D

Terms of Service

Privacy Policy

Contact: info@tinkutara.com