Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 50829 by Raj Singh last updated on 21/Dec/18

Commented by Raj Singh last updated on 21/Dec/18

this is class 10 problem so solve  by general method

thisisclass10problemsosolvebygeneralmethod

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Dec/18

area of square=a^2   area of ADCA sector=(1/4)×πa^2   DC=x axis    DA=y axis  sector ADCA part of circle x^2 +y^2 =a^2   sector DCBD part of circle (x−a)^2 +y^2 =a^2   solving  x^2 =(x−a)^2   x^2 =x^2 −2xa+a^2    so 2xa=a^2    x=(a/2)  area of big white portion=W  ∫_0 ^(a/2) (√(a^2 −(x−a)^2 )) dx+∫_(a/2) ^a (√(a^2 −x^2 )) dx=W  so required shaded area=2((1/4)πa^2 −W)  formula ∫(√(A^2 −X^2 )) dX=(X/2)(√(A^2 −X^2 )) +(A^2 /2)sin^(−1) ((X/A))  I_1 =∣((x−a)/2)(√(a^2 −(x−a)^2 )) +(a^2 /2)sin^(−1) (((x−a)/a))∣_0 ^(a/2)   ={(((−a)/4)×a((√3)/2))+(a^2 /2)sin^(−1) (((−1)/2))−(a^2 /2)sin^(−1) (−1)}  =((−(√3))/8)a^2 −(a^2 /2)((π/6))+(a^2 /2)×(π/2)  I_2 =∣(x/2)(√(a^2 −x^2 )) +(a^2 /2)sin^(−1) ((x/a))∣_(a/2) ^a   =(a/2)×0+(a^2 /2)×(π/2)−(a/4)×((a(√3))/2)−(a^2 /2)×(π/6)  =((πa^2 )/4)−((a^2 (√3))/8)−((πa^2 )/(12))  W=2(((πa^2 )/4)−((√3)/8)a^2 −((πa^2 )/(12)))=((πa^2 )/2)−(((√3) a^2 )/4)−((πa^2 )/6)  so required area  2[((πa^2 )/4)−((πa^2 )/2)+(((√3) a^2 )/4)+((πa^2 )/6)]  =2[((3πa^2 −6πa^2 +3(√3) a^2 +2πa^2 )/(12))]  =(1/6)[3(√3) a^2 −πa^2 ]  pls check

areaofsquare=a2areaofADCAsector=14×πa2DC=xaxisDA=yaxissectorADCApartofcirclex2+y2=a2sectorDCBDpartofcircle(xa)2+y2=a2solvingx2=(xa)2x2=x22xa+a2so2xa=a2x=a2areaofbigwhiteportion=W0a2a2(xa)2dx+a2aa2x2dx=Wsorequiredshadedarea=2(14πa2W)formulaA2X2dX=X2A2X2+A22sin1(XA)I1=∣xa2a2(xa)2+a22sin1(xaa)0a2={(a4×a32)+a22sin1(12)a22sin1(1)}=38a2a22(π6)+a22×π2I2=∣x2a2x2+a22sin1(xa)a2a=a2×0+a22×π2a4×a32a22×π6=πa24a238πa212W=2(πa2438a2πa212)=πa223a24πa26sorequiredarea2[πa24πa22+3a24+πa26]=2[3πa26πa2+33a2+2πa212]=16[33a2πa2]plscheck

Answered by mr W last updated on 21/Dec/18

(2)  R=radius of big circleR  r=radius of small circle  RB=2R−2r=9  ⇒R−r=4.5⇒r=R−4.5  AE=OA−OE=R−(√(r^2 −(R−r)^2 ))=R−(√(R(2r−R)))=5  R−(√(R(R−9)))=5  R−5=(√(R(R−9)))  R^2 −10R+25=R^2 −9R  −10R+25=−9R  ⇒R=25  ⇒r=20.5  A_(color) =π(R^2 −r^2 )=π(R+r)(R−r)  =π×45.5×4.5=643

(2)R=radiusofbigcircleRr=radiusofsmallcircleRB=2R2r=9Rr=4.5r=R4.5AE=OAOE=Rr2(Rr)2=RR(2rR)=5RR(R9)=5R5=R(R9)R210R+25=R29R10R+25=9RR=25r=20.5Acolor=π(R2r2)=π(R+r)(Rr)=π×45.5×4.5=643

Terms of Service

Privacy Policy

Contact: info@tinkutara.com