Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51353 by behi83417@gmail.com last updated on 26/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 27/Dec/18

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18

1)I=∫_0 ^(π/2) (((√(cosx)) )/((√(cosx)) +(√(sinx)) ))dx  I=∫_0 ^(π/2) (((√(cos((π/2)−x))) )/((√(cos((π/2)−x))) +(√(sin((π/2)−x))) ))dx  2I=∫_0 ^(π/2) (((√(cosx)) +(√(sinx)) )/((√(sinx)) +(√(cosx)) )) dx  2I=∣x∣_0 ^(π/2) =(π/2)   so I=(π/4)

1)I=0π2cosxcosx+sinxdxI=0π2cos(π2x)cos(π2x)+sin(π2x)dx2I=0π2cosx+sinxsinx+cosxdx2I=∣x0π2=π2soI=π4

Commented by behi83417@gmail.com last updated on 26/Dec/18

thank a lot sir tanmay.  but the power is:  (√2)  ...i.e:(tgx)^(√2)

thankalotsirtanmay.butthepoweris:2...i.e:(tgx)2

Commented by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18

it is the answer of ∫_0 ^(π/2) (dx/(1+(√(tanx))))   but not ∫_0 ^(π/2) (dx/(1+(tanx)^((√2) ) ))  pls wait ..sir let me think...

itistheanswerof0π2dx1+tanxbutnot0π2dx1+(tanx)2plswait..sirletmethink...

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18

4)∫_0 ^1 ((x^a −1)/(lnx))dx  I(a)=∫_0 ^1 ((x^a −1)/(lnx))dx  ((dI(a))/da)=∫_0 ^1 (∂/∂a)(((x^a −1)/(lnx)))dx  =∫_0 ^1 ((x^a lnx)/(lnx))dx  =∣(x^(a+1) /(a+1))∣_0 ^1 =(1/(a+1))  ∫dI(a)=∫(da/(a+1))  I(a)=ln(a+1)+c  when  a=0        I(a)=0   [∫((x^0 −1)/(lnx))dx=0]  c=0  I(a)=ln(a+1)  hence I=ln2  when a=1

4)01xa1lnxdxI(a)=01xa1lnxdxdI(a)da=01a(xa1lnx)dx=01xalnxlnxdx=∣xa+1a+101=1a+1dI(a)=daa+1I(a)=ln(a+1)+cwhena=0I(a)=0[x01lnxdx=0]c=0I(a)=ln(a+1)henceI=ln2whena=1

Answered by mr W last updated on 26/Dec/18

(3)  ∫((sin^2  x)/x^2 ) dx  =−∫sin^2  x d((1/x))  =−((sin^2  x)/x)+∫((2 sin x cos x)/x) dx  =−((sin^2  x)/x)+∫((sin 2x)/x) dx  =−((sin^2  x)/x)+∫((sin 2x)/(2x)) d(2x)  ∫_0 ^∞ ((sin^2  x)/x^2 ) dx  =−[((sin^2  x)/x)]_0 ^∞ +∫_0 ^∞ ((sin 2x)/(2x)) d(2x)  =0+∫_0 ^∞ ((sin t)/t) dt  =(π/2)

(3)sin2xx2dx=sin2xd(1x)=sin2xx+2sinxcosxxdx=sin2xx+sin2xxdx=sin2xx+sin2x2xd(2x)0sin2xx2dx=[sin2xx]0+0sin2x2xd(2x)=0+0sinttdt=π2

Commented by behi83417@gmail.com last updated on 26/Dec/18

let:f(a)=∫_0 ^∞ ((sin^2 ax)/x^2 )dx  ⇒((df(a))/da)=∫_0 ^∞ ((2xsinaxcosax)/x^2 )dx=  =∫_0 ^∞ ((sin2ax)/x)dx=2a∫_0 ^∞ ((sint)/t)dt=2a(π/2)=aπ  ⇒f′(a)=aπ⇒f(a)=π(a^2 /2)+C.  f(0)=0⇒C=0⇒f(a)=((π.a^2 )/2)  if: a=1 then:f(1)=∫_(      0) ^(            ∞) ((sin^2 x)/x^2 )dx=(π/2) .

let:f(a)=0sin2axx2dxdf(a)da=02xsinaxcosaxx2dx==0sin2axxdx=2a0sinttdt=2aπ2=aπf(a)=aπf(a)=πa22+C.f(0)=0C=0f(a)=π.a22if:a=1then:f(1)=0sin2xx2dx=π2.

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18

1)∫_0 ^(π/2) (dx/(1+(tanx)^a ))        [[ a=(√2) ]  ∫_0 ^(π/2) (dx/(1+(((sinx)^a )/((cosx)^a ))))  I=∫_0 ^(π/2) (((cosx)^a )/((sinx)^a +(cosx)^a ))dx  now using ∫_0 ^(π/2) f(x)dx =∫_0 ^(π/2) f((π/2)−x)dx  2I=∫_0 ^(π/2) dx   I=(π/4)

1)0π2dx1+(tanx)a[[a=2]0π2dx1+(sinx)a(cosx)aI=0π2(cosx)a(sinx)a+(cosx)adxnowusing0π2f(x)dx=0π2f(π2x)dx2I=0π2dxI=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com