Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 51691 by peter frank last updated on 29/Dec/18

Answered by afachri last updated on 29/Dec/18

suppose γ = U_1  ; β = U_2  ; α = U_3   𝛄 , 𝛃  =  ((−a ± (√(a^2 − 4b )))/2)  𝛃 − 𝛄  =  (((−a − (√(a^2 − 4b ))) − (−a+ (√(a^2 − 4b))))/2)  𝛃 − 𝛄  =  −(√(a^2 − 4b  ))  or    β − γ  = +(√(a^2 − 4b  ))  in A.P  :               β − γ   =  α − β  ±(√(a^2 − 4b ))  =  α − ((−a ± (√(a^2 − 4b )))/2)              α             =  ±(√(a^2 − 4b ))  +  ((−a ± (√(a^2 − 4b )))/2)              α             = ((±2(√(a^2 − 4b ))  −a ± (√(a^2 − 4b)))/2)              α             = ((−a ± 3(√(a^2 − 4b)))/2)  the roots of y^2 + ay + (9b − 2a^2 ) = 0  y_(1 , 2)   =  ((−a ± (√( a^2 − 4(9b − 2a^2 ) )))/2)              =  ((−a ± (√(a^2 + 8a^2  − 36b )))/2)              =  ((−a ± (√(9a^2  − 36b )))/2)              =  ((−a ± (√(9(a^2  − 4b) )))/2)              =  ((−a ± 3(√((a^2  − 4b) )))/2)  we get same product for 𝛂 and y_(1,2)

supposeγ=U1;β=U2;α=U3γ,β=a±a24b2βγ=(aa24b)(a+a24b)2βγ=a24borβγ=+a24binA.P:βγ=αβ±a24b=αa±a24b2α=±a24b+a±a24b2α=±2a24ba±a24b2α=a±3a24b2therootsofy2+ay+(9b2a2)=0y1,2=a±a24(9b2a2)2=a±a2+8a236b2=a±9a236b2=a±9(a24b)2=a±3(a24b)2wegetsameproductforαandy1,2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com