Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52356 by Tawa1 last updated on 06/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 06/Jan/19

Commented by Tawa1 last updated on 07/Jan/19

Sir please help.

Sirpleasehelp.

Commented by MJS last updated on 07/Jan/19

this can′t be solved using elementary calculus  not sure if these help:  tan^(−1)  θ =(i/2)(ln (1−iθ) −ln (1+iθ)) ⇒  ⇒ tan^(−1)  x^2  =(i/2)(ln (1−ix^2 ) −ln (1+ix^2 )) ⇒  ⇒ tan^(−1)  x^2 =(i/2)ln ((1−ix^2 )/(1+ix^2 )) =(i/2)ln ((1−x^4 +2ix^2 )/(x^4 +1)) =       [ln (a+bi) =(1/2)ln (a^2 +b^2 ) +i(sign(b)(π/2)−tan^(−1)  (a/b))]  =(π/4)+(1/2)tan^(−1)  ((x^4 −1)/(2x^2 ))  x^8 +x^4 +1=(x^4 +x^2 +1)(x^4 −x^2 +1)=  =(x^2 +x+1)(x^2 −x+1)(x^2 +(√3)x+1)(x^2 −(√3)x+1  =(x+((1+i(√3))/2))(x−((1+i(√3))/2))(x+((1−i(√3))/2))(x−((1−i(√3))/2))(x+(((√3)+i)/2))(x−(((√3)+i)/2))(x+(((√3)−i)/2))(x−(((√3)−i)/2))

thiscantbesolvedusingelementarycalculusnotsureifthesehelp:tan1θ=i2(ln(1iθ)ln(1+iθ))tan1x2=i2(ln(1ix2)ln(1+ix2))tan1x2=i2ln1ix21+ix2=i2ln1x4+2ix2x4+1=[ln(a+bi)=12ln(a2+b2)+i(sign(b)π2tan1ab)]=π4+12tan1x412x2x8+x4+1=(x4+x2+1)(x4x2+1)==(x2+x+1)(x2x+1)(x2+3x+1)(x23x+1=(x+1+i32)(x1+i32)(x+1i32)(x1i32)(x+3+i2)(x3+i2)(x+3i2)(x3i2)

Commented by Tawa1 last updated on 07/Jan/19

God bless you sir

Godblessyousir

Commented by Abdo msup. last updated on 07/Jan/19

let I =∫_0 ^∞   ((arctan(x^2 ))/(x^8  +x^4  +1)) dx changement x^2 =tant  give I =∫_0 ^(π/2)  (t/(tan^4 t+tan^2 t +1))   ((1+tan^2 t)/(2(√(1+tan^2 t))))dt  =(1/2)∫_0 ^(π/2)   ((t(√(1+tan^2 t)))/(1+tan^2 t +tan^4 t))dt  =(1/2) ∫_0 ^(π/2)  (t/(cost((1/(cos^2 t)) +(1+tan^2 t−1)^2 )))dt  =(1/2) ∫_0 ^(π/2)      (t/((1/(cost))+cost((1/(cos^2 t))−1)^2 ))dt  =(1/2) ∫_0 ^(π/2)     (t/((1/(cost))+cosst((1/(cos^4 t))−(2/(cos^2 t)) +1)))dt  =(1/2) ∫_0 ^(π/2)        (t/((1/(cost))+(1/(cos^3 t))−(2/(cost)) +cost))dt  =(1/2) ∫_0 ^(π/2)       ((t cos^3 t)/(cos^2 t +1−2cos^2 t +cos^4 t))dt  =(1/2) ∫_0 ^(π/2)     ((t cos^3 t)/(cos^4 t−cos^2 t +1)) dt   ...be continued...

letI=0arctan(x2)x8+x4+1dxchangementx2=tantgiveI=0π2ttan4t+tan2t+11+tan2t21+tan2tdt=120π2t1+tan2t1+tan2t+tan4tdt=120π2tcost(1cos2t+(1+tan2t1)2)dt=120π2t1cost+cost(1cos2t1)2dt=120π2t1cost+cosst(1cos4t2cos2t+1)dt=120π2t1cost+1cos3t2cost+costdt=120π2tcos3tcos2t+12cos2t+cos4tdt=120π2tcos3tcos4tcos2t+1dt...becontinued...

Commented by Abdo msup. last updated on 07/Jan/19

let F(α)=∫_0 ^∞     ((arctan(αx^2 ))/(1+x^4  +x^8 )) dx  with α>0 we  have F^′ (α) =∫_0 ^∞     (x^2 /((1+α^2 x^4 )(x^8  +x^4  +1)))dx  ⇒2F^′ (α) =∫_(−∞) ^(+∞)    (x^2 /((x^8  +x^4  +1)(α^2 x^4  +1)))dx  let consider the complex function  ϕ(z)=(z^2 /((z^8  +z^4  +1)(α^2 z^4  +1))) poles of ϕ?  z^8  +z^4  +1=0 ⇔1+z^4  +(z^4 )^2 =0 ⇔((1−z^(12) )/(1−z^4 )) =0 ⇔  z^(12) =1 and z^4 ≠ 1 the roots of z^(12) =1 are  z_k =e^(i((kπ)/6))    and k∈[[0,11]] but only we must take   8 roots let search..  z_0 =1 (to eliminate)  z_1 =e^((iπ)/6)   and z_1 ^4 ≠1  z_2 =e^((iπ)/3)   and z_2 ^4  ≠1  z_3 =e^((iπ)/2)   and z_3 ^4  =1 (to eliminate)  z_4 =e^(i((2π)/3))   and z_4 ^4  ≠1  z_5  =e^((i5π)/6)   and z_5 ^4  ≠1  z_6 =e^(iπ)  and z_6 ^4 =1 (to eliminate)  z_7 =e^((i7.π)/6)   and z_7 ^4  ≠1  z_8 = e^((i4π)/3)   and z_8 ^4  ≠1  z_9 = e^((i3π)/2)   and z_9 ^4 =1 (to eliminate)  z_(10) =e^((i5π)/3)   and z_(10) ^4  ≠1  z_(11) =e^((i11π)/6)   ⇒  z^8  +z^4  +1 =(z−z_1 )(z−z_2 )(z−z_4 )(z−z_5 )(z−z_7 )(z−z_8 )(z−z_(10) )(z−z_(11) )  also we have α^2 z^4 +1 =α^2 (z^4 +(1/α^2 ))  =α^2 (z^4 −((i/α))^2 )=α^2 (z^2 −(i/α))(z^2 +(i/α))  =α^2 (z−(1/(√α)) e^((iπ)/4) )(z+(1/(√α)) e^((iπ)/4) )(z−(1/(√α)) e^(−((iπ)/4)) )(z+(1/(√α))e^(−((iπ)/4)) )  so the poles of ϕ are   +^− (1/(√α)) e^((iπ)/4)   and  +^−  (1/(√α)) e^(−((iπ)/4))   also tbe complex  z_k  with k ∈{1,2,4,5,7,8,10,11} after we use  Residus theorem  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Σ_(im(z_k )>0) Res(ϕ ,z_k )  ...be continued ...

letF(α)=0arctan(αx2)1+x4+x8dxwithα>0wehaveF(α)=0x2(1+α2x4)(x8+x4+1)dx2F(α)=+x2(x8+x4+1)(α2x4+1)dxletconsiderthecomplexfunctionφ(z)=z2(z8+z4+1)(α2z4+1)polesofφ?z8+z4+1=01+z4+(z4)2=01z121z4=0z12=1andz41therootsofz12=1arezk=eikπ6andk[[0,11]]butonlywemusttake8rootsletsearch..z0=1(toeliminate)z1=eiπ6andz141z2=eiπ3andz241z3=eiπ2andz34=1(toeliminate)z4=ei2π3andz441z5=ei5π6andz541z6=eiπandz64=1(toeliminate)z7=ei7.π6andz741z8=ei4π3andz841z9=ei3π2andz94=1(toeliminate)z10=ei5π3andz1041z11=ei11π6z8+z4+1=(zz1)(zz2)(zz4)(zz5)(zz7)(zz8)(zz10)(zz11)alsowehaveα2z4+1=α2(z4+1α2)=α2(z4(iα)2)=α2(z2iα)(z2+iα)=α2(z1αeiπ4)(z+1αeiπ4)(z1αeiπ4)(z+1αeiπ4)sothepolesofφare+1αeiπ4and+1αeiπ4alsotbecomplexzkwithk{1,2,4,5,7,8,10,11}afterweuseResidustheorem+φ(z)dz=2iπim(zk)>0Res(φ,zk)...becontinued...

Commented by Tawa1 last updated on 07/Jan/19

God bless you sir.  waiting ...

Godblessyousir.waiting...

Commented by Abdo msup. last updated on 07/Jan/19

thanks sir this is the way for this integral....

thankssirthisisthewayforthisintegral....

Answered by MJS last updated on 07/Jan/19

≈.269949

.269949

Terms of Service

Privacy Policy

Contact: info@tinkutara.com