Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 53376 by rajeshghorai130@gmail.com last updated on 21/Jan/19

Commented by Abdo msup. last updated on 21/Jan/19

let A(x)=(((sinα)^x −(cosα)^x  −cos(2α))/(x−4))  A(x)=_(x−4=t)     (((sinα)^(t+4)  −(cosα)^(t+4) −cos(2α))/t)=B(t)  ⇒lim_(x→4) A(x)=lim_(t→0) B(t)   B(t) =((sin^4 α  e^(tln(sinα))  −(cosα)^4  e^(t ln(cosα)) −cos(2α))/t)  but e^(tln(sinα))  ∼ 1+tln(sinα) (t→0)  e^(tln(cosα)) ∼1 +t ln(cosα) ⇒  B(t) ∼ ((sin^4 α(1+t ln(sinα))−(cos^4 α)(1+tln(cosα))−cos(2α))/t)  B(t)∼((sin^4 α−cos^4 α−cos(2α) +tsin^4 αln(sinα)−tcos^4 αln(cosα))/t)  ⇒B(t)∼sin^4 αln(sinα)−cos^4 α ln(cosα) (t→0)  ⇒lim_(x→4) A(x)=lim_(t→0) B(t)  (sinα)^4 ln(sinα)−(cosα)^4 ln(cosα).

letA(x)=(sinα)x(cosα)xcos(2α)x4A(x)=x4=t(sinα)t+4(cosα)t+4cos(2α)t=B(t)limx4A(x)=limt0B(t)B(t)=sin4αetln(sinα)(cosα)4etln(cosα)cos(2α)tbutetln(sinα)1+tln(sinα)(t0)etln(cosα)1+tln(cosα)B(t)sin4α(1+tln(sinα))(cos4α)(1+tln(cosα))cos(2α)tB(t)sin4αcos4αcos(2α)+tsin4αln(sinα)tcos4αln(cosα)tB(t)sin4αln(sinα)cos4αln(cosα)(t0)limx4A(x)=limt0B(t)(sinα)4ln(sinα)(cosα)4ln(cosα).

Answered by pooja24 last updated on 21/Jan/19

using l′hopital rule ans is 4(sin^3 α−cos^3 α)

usinglhopitalruleansis4(sin3αcos3α)

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19

i think question should be  lim_(x→4)  (((sinα)^x −(cosα)^x +cos2α)/(x−4))((0/0))form  using LH rule  lim_(x→4)  (((sinα)^x lnsinα−(cosα)^x lncosα)/1)  =(sinα)^4 lnsinα−(cosα)^4 lncosα

ithinkquestionshouldbelimx4(sinα)x(cosα)x+cos2αx4(00)formusingLHrulelimx4(sinα)xlnsinα(cosα)xlncosα1=(sinα)4lnsinα(cosα)4lncosα

Commented by rajeshghorai130@gmail.com last updated on 21/Jan/19

 solve it  without LH rule ??

solveitwithoutLHrule??

Commented by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19

is it a request...language..seem otherwise

isitarequest...language..seemotherwise

Commented by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19

without LH rule...  t=x−4  lim_(t→0)  (((sinα)^(t+4) −(cosα)^(t+4) +cos^2 α−sin^2 α)/t)  lim_(t→0)  (((sin^ α)^(t+4) −(cosα)^(t+4) +(cos^2 α−sin^2 α)(cos^2 α+sin^2 α)←tricks)/t)  =lim_(t→0)  [((sin^4 α(sin^t α−1))/t)−((cos^4 α(cos^t α−1))/t)]  =sin^4 α×lnsinα−cos^4 α×lncosα( proved)  used formula  lim_(x→0) ((a^x −1)/x)=lna                  N      li_(x→0)   lim_(x→0) ((a^x −1)/x)  =li_(x→0)

withoutLHrule...t=x4limt0(sinα)t+4(cosα)t+4+cos2αsin2αtlimt0(sinα)t+4(cosα)t+4+(cos2αsin2α)(cos2α+sin2α)trickst=limt0[sin4α(sintα1)tcos4α(costα1)t]=sin4α×lnsinαcos4α×lncosα(proved)usedformulalimx0ax1x=lnaNlix0limx0ax1x=lix0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com