Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54209 by cesar.marval.larez@gmail.com last updated on 31/Jan/19

Answered by Joel578 last updated on 31/Jan/19

I = ∫ ((tan^(−1) x)/(1 + x^2 )) dx  u = tan^(−1)  x   → du = (dx/(1 + x^2 ))  dv = (dx/(1 + x^2 ))   →  v = tan^(−1)  x  I = (tan^(−1)  x)^2  − ∫ ((tan^(−1)  x)/(1 + x^2 )) dx     = (tan^(−1)  x)^2  − I  2I = (tan^(−1)  x)^2   I = (1/2)(tan^(−1)  x)^2  + C

I=tan1x1+x2dxu=tan1xdu=dx1+x2dv=dx1+x2v=tan1xI=(tan1x)2tan1x1+x2dx=(tan1x)2I2I=(tan1x)2I=12(tan1x)2+C

Answered by Prithwish sen last updated on 31/Jan/19

  let, tan^(−1) x = t  then (dx/(1+x^2 )) = dt  ∴ ∫ ((tan^(−1) x)/(1+x^2 ))dx = ∫ t dt  = ((t2)/2) + c  = (1/2) (tan^(−1) x)^2  + c

let,tan1x=tthendx1+x2=dttan1x1+x2dx=tdt=t22+c=12(tan1x)2+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com