Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59803 by bhanukumarb2@gmail.com last updated on 15/May/19

Commented by maxmathsup by imad last updated on 16/May/19

let A =(1/π^2 ) ∫_0 ^∞  (((lnx)^2 )/((√x)(1−x)^2 )) dx ⇒π^2  A =_((√x)=t)    ∫_0 ^∞    (((ln(t^2 ))^2 )/(t(1−t^2 )^2 )) (2t)dt  =8 ∫_0 ^∞    (((lnt)^2 )/((1−t^2 )^2 )) dt    but  ∫_0 ^∞     (((lnt)^2 )/((1−t^2 )^2 ))dt =∫_0 ^1   (((lnt)^2 )/((1−t^2 )^2 )) dt +∫_1 ^(+∞)   (((lnt)^2 )/((1−t^2 )^2 ))dt  ∫_1 ^(+∞)   (((lnt)^2 )/((1−t^2 )^2 )) dt =_(t=(1/u))    −∫_0 ^1    (((lnu)^2 )/((1−(1/u^2 ))^2 )) (−(du/u^2 ))  = ∫_0 ^1     (((lnu)^2 )/((1−u^2 )^2 )) ⇒ ∫_0 ^∞    (((lnt)^2 )/((1−t^2 )^2 )) dt =2 ∫_0 ^1   (((lnt)^2 )/((1−t^2 )^2 )) dt  Σ_(n=0) ^∞  x^n   =(1/(1−x))  for ∣x∣<1 ⇒Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒  (1/((1−t^2 )^2 )) =Σ_(n=1) ^∞  nt^(2n−2)  ⇒∫_0 ^1    (((lnt)^2 )/((1−t^2 )^2 ))dt = ∫_0 ^1   (Σ_(n=1) ^∞  n t^(2n−2) )(lnt)^2 dt  =Σ_(n=1) ^∞   n ∫_0 ^1    t^(2n−2) (ln(t))^2 dt =Σ_(n=1) ^∞  n A_n   A_n = ∫_0 ^1   t^(2n−2) (ln(t))^2  dt  by parts  u^′ =t^(2n−2)    and  v =(ln(t)^2  ⇒  A_n =[(1/(2n−1)) t^(2n−1)  (ln(t))^2 ]_0 ^1  −∫_0 ^1   (1/(2n−1))t^(2n−1)  ((2ln(t))/t) dt  =−(2/(2n−1)) ∫_0 ^1    t^(2n−2)  ln(t)dt  again by parts u^′ =t^(2n−2)  and v=ln(t)  ∫_0 ^1   t^(2n−2) ln(t)dt =[(1/(2n−1)) t^(2n−1) ln(t)]_0 ^1  −∫_0 ^1  (1/(2n−1)) t^(2n−1)  (1/t) dt  =−(1/(2n−1)) ∫_0 ^1  t^(2n−2)  dt =−(1/((2n−1)^2 )) ⇒ A_n =(2/((2n−1)^3 )) ⇒  ∫_0 ^1   (((lnt)^2 )/((1−t^2 )^2 )) dt =Σ_(n=1) ^∞  ((2n)/((2n−1)^3 )) ⇒ A =16 Σ_(n=1) ^∞  ((2n)/((2n−1)^3 ))  =32 Σ_(n=1) ^(∞   )    (n/((2n−1)^3 ))  let determine  Σ_(n=1) ^∞  (n/((2n−1)^3 )) =S  S =(1/2) Σ_(n=1) ^∞  ((2n−1 +1)/((2n−1)^3 )) =(1/2) Σ_(n=1) ^∞  (1/((2n−1)^2 )) +(1/2) Σ_(n=1) ^∞  (1/((2n−1)^3 ))

letA=1π20(lnx)2x(1x)2dxπ2A=x=t0(ln(t2))2t(1t2)2(2t)dt=80(lnt)2(1t2)2dtbut0(lnt)2(1t2)2dt=01(lnt)2(1t2)2dt+1+(lnt)2(1t2)2dt1+(lnt)2(1t2)2dt=t=1u01(lnu)2(11u2)2(duu2)=01(lnu)2(1u2)20(lnt)2(1t2)2dt=201(lnt)2(1t2)2dtn=0xn=11xforx∣<1n=1nxn1=1(1x)21(1t2)2=n=1nt2n201(lnt)2(1t2)2dt=01(n=1nt2n2)(lnt)2dt=n=1n01t2n2(ln(t))2dt=n=1nAnAn=01t2n2(ln(t))2dtbypartsu=t2n2andv=(ln(t)2An=[12n1t2n1(ln(t))2]010112n1t2n12ln(t)tdt=22n101t2n2ln(t)dtagainbypartsu=t2n2andv=ln(t)01t2n2ln(t)dt=[12n1t2n1ln(t)]010112n1t2n11tdt=12n101t2n2dt=1(2n1)2An=2(2n1)301(lnt)2(1t2)2dt=n=12n(2n1)3A=16n=12n(2n1)3=32n=1n(2n1)3letdeterminen=1n(2n1)3=SS=12n=12n1+1(2n1)3=12n=11(2n1)2+12n=11(2n1)3

Commented by maxmathsup by imad last updated on 16/May/19

we have Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 ))  ⇒(3/4) Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒(3/4) (π^2 /6) =(π^2 /8) =Σ_(n=0) ^∞  (1/((2n+1)^2 ))  and  Σ_(n=1) ^∞    (1/((2n−1)^2 )) =_(n=p+1)   Σ_(p=0) ^∞   (1/((2p+1)^2 )) =(π^2 /8)    Σ_(n=1) ^∞  (1/n^3 ) =ξ(3) =Σ_(n=1) ^∞  (1/(8n^3 )) +Σ_(n=0) ^∞  (1/((2n+1)^3 )) ⇒  Σ_(n=0) ^∞   (1/((2n+1)^3 )) =(7/8)ξ(3) =Σ_(n=1) ^∞   (1/((2n−1)^3 ))  ⇒ S =(π^2 /(16)) +(7/(16))ξ(3) ⇒  π^2 A =32{(π^2 /(16)) +(7/(16)) ξ(3)}  ⇒π^2  A =2π^2  +14 ξ(3) ⇒A =2 +((14)/π^2 ) ξ(3) .

wehaven=11n2=14n=11n2+n=01(2n+1)234n=11n2=n=01(2n+1)234π26=π28=n=01(2n+1)2andn=11(2n1)2=n=p+1p=01(2p+1)2=π28n=11n3=ξ(3)=n=118n3+n=01(2n+1)3n=01(2n+1)3=78ξ(3)=n=11(2n1)3S=π216+716ξ(3)π2A=32{π216+716ξ(3)}π2A=2π2+14ξ(3)A=2+14π2ξ(3).

Commented by bhanukumarb2@gmail.com last updated on 16/May/19

very osm

veryosm

Terms of Service

Privacy Policy

Contact: info@tinkutara.com