Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 60367 by bhanukumarb2@gmail.com last updated on 20/May/19

Commented by bhanukumarb2@gmail.com last updated on 20/May/19

1

1

Commented by Mr X pcx last updated on 20/May/19

I_2 =∫_0 ^1   (dx/((1+x^2 )^2 )) vhangement x=tanθ  give I_2 =∫_0 ^(π/4)   ((1+tan^2 θ)/((1+tan^2 θ)^2 ))dθ  =∫_0 ^(π/4)    (dθ/(1+tan^2 θ)) =∫_0 ^(π/4)  cos^2 θ dθ  =∫_0 ^(π/4)  ((1+cos(2θ))/2)dθ =(π/8) +[(1/4)sin(2θ)]_0 ^(π/4)   =(π/8) +(1/4)  so the answer (B) is correct.

I2=01dx(1+x2)2vhangementx=tanθgiveI2=0π41+tan2θ(1+tan2θ)2dθ=0π4dθ1+tan2θ=0π4cos2θdθ=0π41+cos(2θ)2dθ=π8+[14sin(2θ)]0π4=π8+14sotheanswer(B)iscorrect.

Commented by bhanukumarb2@gmail.com last updated on 20/May/19

1 question sir

1questionsir

Commented by Mr X pcx last updated on 20/May/19

we have I_n =∫_0 ^1   (dx/((1+x^2 )^n ))  =∫_0 ^1    ((1+x^2 )/((1+x^2 )^(n+1) )) dx =I_(n+1)   +∫_0 ^1   x (x/((1+x^2 )^(n+1) ))dx  by parts u=x and v^′ =x (1+x^2 )^(−n−1)   ∫_0 ^1  x  (x/((1+x^2 )^(n+1) ))dx =[x(−(1/(2n)) (1+x^2 )^(−n) ]_0 ^1   −∫_0 ^1   1.(−(1/(2n))(1+x^2 )^(−n) )dx  =−(1/(2n)) 2^(−n)   +(1/(2n)) I_n  ⇒ I_n =I_(n+1) +(1/(2n))I_n   −(1/(2n)) 2^(−n)  ⇒ (1−(1/(2n)))I_n = I_(n+1) −(1/(2n)) 2^(−n)   ⇒(2n−1) I_n =2n I_(n+1) −(1/2^n ) ⇒  2n I_(n+1) =(1/2^n ) +(2n−1)I_n

wehaveIn=01dx(1+x2)n=011+x2(1+x2)n+1dx=In+1+01xx(1+x2)n+1dxbypartsu=xandv=x(1+x2)n101xx(1+x2)n+1dx=[x(12n(1+x2)n]01011.(12n(1+x2)n)dx=12n2n+12nInIn=In+1+12nIn12n2n(112n)In=In+112n2n(2n1)In=2nIn+112n2nIn+1=12n+(2n1)In

Commented by Mr X pcx last updated on 20/May/19

option (A) is true.

option(A)istrue.

Commented by bhanukumarb2@gmail.com last updated on 21/May/19

question first nt 2 doubt is 1 question   why u r solving 2nd one

questionfirstnt2doubtis1questionwhyursolving2ndone

Terms of Service

Privacy Policy

Contact: info@tinkutara.com