Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60376 by rahul 19 last updated on 20/May/19

Commented by rahul 19 last updated on 20/May/19

dx^∗

dx

Commented by Mr X pcx last updated on 20/May/19

changement x=tan^2 θ give  I =∫   (1/(tanθ(1+tan^2 θ))) arcos(cos(2θ))2tanθ(1+tan^2 θ)dθ  =4θ =4 arctan((√x)) +C.

changementx=tan2θgiveI=1tanθ(1+tan2θ)arcos(cos(2θ))2tanθ(1+tan2θ)dθ=4θ=4arctan(x)+C.

Answered by tanmay last updated on 20/May/19

x=tan^2 θ  dx=2tanθ×sec^2 θdθ  ∫(1/(tanθsec^2 θ))×2θ×2tanθsec^2 θdθ  =4×(θ^2 /2)+c  =2(tan^(−1) (√x) )^2 +c  cross check...  y=2(tan^(−1) (√x) )^2 +c  (dy/dx)=4(tan^(−1) (√x) )×(1/(1+x))×(1/(2(√x)))  =2tan^(−1) (√x) ×(1/((√x) ×(1+x)))  =cos^(−1) (((1−x)/(1+x)))×(1/((√x) ×(1+x)))    α=tan^(−1) (√x)                                  ↖  tanα=(√x)   cos2α=((1−tan^2 α)/(1+tan^2 α))=((1−x)/(1+x))            ⇑  2α=cos^(−1) (((1−x)/(1+x)))                           ⇑  2tan^(−1) (√x) =cos(((1−x)/(1+x)))→→→↑

x=tan2θdx=2tanθ×sec2θdθ1tanθsec2θ×2θ×2tanθsec2θdθ=4×θ22+c=2(tan1x)2+ccrosscheck...y=2(tan1x)2+cdydx=4(tan1x)×11+x×12x=2tan1x×1x×(1+x)=cos1(1x1+x)×1x×(1+x)α=tan1xtanα=xcos2α=1tan2α1+tan2α=1x1+x2α=cos1(1x1+x)2tan1x=cos(1x1+x)→→→↑

Commented by rahul 19 last updated on 20/May/19

thank you sir!   none of the option is correct.

thankyousir!noneoftheoptioniscorrect.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com