Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 60873 by Kunal12588 last updated on 26/May/19

Commented by Prithwish sen last updated on 26/May/19

i) log_2 (4x^2 −x−1)−log_2 (x^2 +1) >0  ((4x^2 −x−1)/(x^2 +1)) >1  3x^2 −x−2 >0  (3x+2)(x−1)>0  either                         or  3x+2 >0                       3x+2<0  x−1 >0                   and x−1 <0  ⇒x>1                   ⇒x< −(2/3)  the soln. is   1<x<−(2/3)

i)log2(4x2x1)log2(x2+1)>04x2x1x2+1>13x2x2>0(3x+2)(x1)>0eitheror3x+2>03x+2<0x1>0andx1<0x>1x<23thesoln.is1<x<23

Commented by maxmathsup by imad last updated on 27/May/19

8) let D the set of definition   x∈D ⇔4x^2 −x−1>0  Δ =1−4(−1) =5 ⇒x_1 =((1+(√5))/8)   and  x_2 =((1−(√5))/8)  so D =]−∞,((1−(√5))/8)[∪]((1+(√5))/8),+∞[  (e)  ⇔ ((ln(4x^2 −x−1))/(ln(x^2  +1))) >1 ⇒ln(4x^2 −x−1)>ln(x^2  +1) ⇒  4x^2 −x−1>x^2  +1 ⇒3x^2 −x−2>0 →Δ =1−4(−6) =25 ⇒  x_1 =((1+5)/6) =1  and  x_2 =((1−5)/6) =−(2/3) ⇒  S =(]−∞,−(2/3)[∪]1,+∞[)∩(]−∞,((1−(√5))/8)[∪]((1+(√5))/8) ,+∞[) =....

8)letDthesetofdefinitionxD4x2x1>0Δ=14(1)=5x1=1+58andx2=158soD=],158[]1+58,+[(e)ln(4x2x1)ln(x2+1)>1ln(4x2x1)>ln(x2+1)4x2x1>x2+13x2x2>0Δ=14(6)=25x1=1+56=1andx2=156=23S=(],23[]1,+[)(],158[]1+58,+[)=....

Commented by Rasheed.Sindhi last updated on 27/May/19

Sir prithwish sen   log_2 (4x^2 −x−1)−log_2 (x^2 +1) >0                     ⇒^(?) ((4x^2 −x−1)/(x^2 +1)) >1

Sirprithwishsenlog2(4x2x1)log2(x2+1)>0?4x2x1x2+1>1

Commented by Prithwish sen last updated on 27/May/19

∵ log_2 (4x^2 −x−1)>log_2 (x^2 +1)  ⇒(4x^2 −x−1)>(x^2 +1)

log2(4x2x1)>log2(x2+1)(4x2x1)>(x2+1)

Commented by Kunal12588 last updated on 28/May/19

well the answers are   8.  x∈ (−∞,((−14)/3))∪(4,∞)  9. I don′t know  10.  x∈ {4}∪ [0,1]

welltheanswersare8.x(,143)(4,)9.Idontknow10.x{4}[0,1]

Answered by tanmay last updated on 27/May/19

9)log_a 2×log_2 b≥1  ((log2)/(loga))×((logb)/(log2))≥1    [log_a b    when b>0   and   a>0]  logb≥loga  b≥a  (x^2 −x−2)≥∣6x∣    now (x^2 −x−2)>0  (x+1)(x−2)>0  f(x)=(x+1)(x−2)  when x>2       f(x)>0  when x<−1   f(x)>0  when  2>x>−1  f(x)<0  so x ∉ (−1,2)  ∣6x∣>0  so value of x can not lie between −1 and 2  solve  x^2 −x−2≥∣6x∣  x^2 −x−2−∣6x∣≥0  when x>2  x^2 −x−2−6x≥0  x^2 −7x−2≥0  x=((7+(√(49+4×1×2)))/2)=7.275   when x<−1  x^2 −x−2+6x≥0  x^2 +5x−2≥0  x=((−5−(√(25+8)))/2)=−5.372

9)loga2×log2b1log2loga×logblog21[logabwhenb>0anda>0]logblogaba(x2x2)⩾∣6xnow(x2x2)>0(x+1)(x2)>0f(x)=(x+1)(x2)whenx>2f(x)>0whenx<1f(x)>0when2>x>1f(x)<0sox(1,2)6x∣>0sovalueofxcannotliebetween1and2solvex2x2⩾∣6xx2x26x∣⩾0whenx>2x2x26x0x27x20x=7+49+4×1×22=7.275whenx<1x2x2+6x0x2+5x20x=525+82=5.372

Answered by tanmay last updated on 27/May/19

10)log_3 a =log_9 b   [a>0    b>0]  ((loga)/(log3))=((logb)/(log9))  ((loga)/(log3))=((logb)/(2log3))  loga^2 =logb  a^2 =b  ((√x) +∣(√x) −1∣)^2 =4(√x) −3+4∣(√x) −1∣  p=(√x)   q=∣(√x) −1∣  (p+q)^2 =4p−3+4q  (p+q)^2 −4(p+q)+3=0  (p+q−3)(p+q−1)=0  p+q=3   and  p+q=1  (√x) +∣(√x) −1∣=3  so x=4 (  when ((√x)−1)>0  x>1)  but when (√x) −1<0    x<1  then (√x) +∣(√x) −1∣  =(√x) −(√x) +1  =1  when  x<1  so   x=4 is the solution

10)log3a=log9b[a>0b>0]logalog3=logblog9logalog3=logb2log3loga2=logba2=b(x+x1)2=4x3+4x1p=xq=∣x1(p+q)2=4p3+4q(p+q)24(p+q)+3=0(p+q3)(p+q1)=0p+q=3andp+q=1x+x1∣=3sox=4(when(x1)>0x>1)butwhenx1<0x<1thenx+x1=xx+1=1whenx<1sox=4isthesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com