Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60910 by Tawa1 last updated on 27/May/19

Commented by Rasheed.Sindhi last updated on 27/May/19

Solve the equation  (x^2  − x + 1)^2  − 4x(x − 1)^2   =   0    x^4 +x^2 +1−2x^3 −2x+2x^2 −4x(x^2 −2x+1)=0  x^4 +x^2 +1−2x^3 −2x+2x^2 −4x^3 +8x^2 −4x=0  x^4 −6x^3 +11x^2 −6x+1=0  x^2 (x^2 +(1/x^2 )−6x−(6/x)+11)=0  x^2 =0 ∣ x^2 +(1/x^2 )−6(x+(1/x))+11=0  x=0  (Extraneous root)             x^2 +2+(1/x^2 )−6(x+(1/x))+11−2=0            (x+(1/x))^2 −6(x+(1/x))+9=0              (x+(1/x)−3)^2 =0              x+(1/x)−3=0              x+(1/x)=3              x^2 −3x+1=0        x=((3±(√5))/2)        x=((3±(√5))/2)

Solvetheequation(x2x+1)24x(x1)2=0x4+x2+12x32x+2x24x(x22x+1)=0x4+x2+12x32x+2x24x3+8x24x=0x46x3+11x26x+1=0x2(x2+1x26x6x+11)=0x2=0x2+1x26(x+1x)+11=0x=0(Extraneousroot)x2+2+1x26(x+1x)+112=0(x+1x)26(x+1x)+9=0(x+1x3)2=0x+1x3=0x+1x=3x23x+1=0x=3±52x=3±52

Commented by Tawa1 last updated on 27/May/19

Prove that if  x + (1/x)  =  y + 1,   then    (((x^2  − x + 1)^2 )/(x(x − 1)^2 ))  =  (y^2 /(y − 1)) .   Hence or   otherwise solve the equation  (x^2  − x + 1)^2  − 4x(x − 1)^2   =   0

Provethatifx+1x=y+1,then(x2x+1)2x(x1)2=y2y1.Henceorotherwisesolvetheequation(x2x+1)24x(x1)2=0

Commented by Tawa1 last updated on 27/May/19

God bless you sir,  i appreciate:

Godblessyousir,iappreciate:

Commented by MJS last updated on 27/May/19

after the proof:  x+(1/x)=y+1∧(((x^2 −x+1)^2 )/(x(x−1)^2 ))=(y^2 /(y−1)) ⇒  ⇒ (x^2 −x+1)^2 −4x(x−1)^2 =0 can be written  as  (y^2 /(y−1))−4=0 ⇒ y^2 −4y+4=0 ⇒ (y−2)^2 =0 ⇒ y=2  x+(1/x)=y+1 ⇒ x+(1/x)−3=0 ⇒ x^2 −3x+1=0 ⇒  ⇒ x=(3/2)±((√5)/2)

aftertheproof:x+1x=y+1(x2x+1)2x(x1)2=y2y1(x2x+1)24x(x1)2=0canbewrittenasy2y14=0y24y+4=0(y2)2=0y=2x+1x=y+1x+1x3=0x23x+1=0x=32±52

Commented by Rasheed.Sindhi last updated on 27/May/19

Very simple sir!    I also had tried to replace x by y but  I couldn′t do it perfectly.

Verysimplesir!IalsohadtriedtoreplacexbyybutIcouldntdoitperfectly.

Commented by Tawa1 last updated on 27/May/19

God bless you sir

Godblessyousir

Commented by maxmathsup by imad last updated on 28/May/19

1)let prove that (y−1)(x^2 −x+1)^2 =y^2 x(x−1)^2   we have  (y−1)(x^2 −x+1)^2 =(x+(1/x) −2) (x^2 −x+1)^2   =((x^2 −2x+1)/x)(x^2 −x+1)^2  =(((x−1)^2 (x^2 −x+1)^2 )/x)  from ather side  y^2 x(x−1)^2  =(x+(1/x)−1)^2 x(x−1)^2  =(((x^2 −x +1)^2 (x−1)^2 )/x)  so the equality is proved .  2)  we have (x^2 −x+1)^2 −4x(x−1)^2  =0 ⇔(x^2 −x+1)^2 =4x(x−1)^2  ⇒  (((x^2 −x+1)^2 )/(x(x−1)^2 )) =4 ⇒(y^2 /(y−1)) =4   with  y =x +(1/x) −1  ⇒y^2 =4y−4 ⇒y^2 −4y +4 =0 ⇒(y−2)^2  =0 ⇒y =2 ⇒  x+(1/x) −1 =2 ⇒x+(1/x) =3 ⇒x^2 +1 =3x ⇒x^2 −3x+1 =0  Δ =9−4 =5 ⇒ x_1 =((3+(√5))/2)  and x_2 =((3−(√5))/2) .

1)letprovethat(y1)(x2x+1)2=y2x(x1)2wehave(y1)(x2x+1)2=(x+1x2)(x2x+1)2=x22x+1x(x2x+1)2=(x1)2(x2x+1)2xfromathersidey2x(x1)2=(x+1x1)2x(x1)2=(x2x+1)2(x1)2xsotheequalityisproved.2)wehave(x2x+1)24x(x1)2=0(x2x+1)2=4x(x1)2(x2x+1)2x(x1)2=4y2y1=4withy=x+1x1y2=4y4y24y+4=0(y2)2=0y=2x+1x1=2x+1x=3x2+1=3xx23x+1=0Δ=94=5x1=3+52andx2=352.

Answered by Rasheed.Sindhi last updated on 27/May/19

x+(1/x)=y+1⇒^(?) (((x^2 −x+1)^2 )/(x(x−1)^2 ))=(y^2 /(y−1))  x+(1/x)=y+1⇒y=((x^2 −x+1)/x)  So,                 (((x^2 −x+1)^2 )/(x(x−1)^2 ))=(y^2 /(y−1))                       =(((((x^2 −x+1)/x))^2 )/((((x^2 −x+1)/x))−1))                       =((((x^2 −x+1)^2 )/x^2 )/((x^2 −2x+1)/x))               =(((x^2 −x+1)^2 )/x^2 )×(x/((x−1)^2 ))                    =(((x^2 −x+1)^2 )/(x(x−1)^2 ))      (Proved)      For solution of the equation see my  comment below the question.

x+1x=y+1?(x2x+1)2x(x1)2=y2y1x+1x=y+1y=x2x+1xSo,(x2x+1)2x(x1)2=y2y1=(x2x+1x)2(x2x+1x)1=(x2x+1)2x2x22x+1x=(x2x+1)2x2×x(x1)2=(x2x+1)2x(x1)2(Proved)Forsolutionoftheequationseemycommentbelowthequestion.

Commented by Tawa1 last updated on 27/May/19

God bless you sir,  waiting

Godblessyousir,waiting

Terms of Service

Privacy Policy

Contact: info@tinkutara.com