Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61208 by Tawa1 last updated on 30/May/19

Commented by maxmathsup by imad last updated on 30/May/19

its only a try let f(t) =∫_0 ^∞  ((ln(1+tx^2 ))/(1+x^4 )) dx  with t ≥0  we have f^′ (t) =∫_0 ^∞  (x^2 /((1+tx^2 )(1+x^4 ))) dx ⇒2f^′ (t) =∫_(−∞) ^(+∞)  (x^2 /((1+tx^2 )(1+x^4 )))dx  let consider the complex function ϕ(z) =(z^2 /((tz^2 +1)(z^4  +1)))  poles of ϕ?   we have ϕ(z) =(z^2 /(((√t)z+i)((√t)z −i)(z^2 −i)(z^2  +i)))  =(z^2 /(t(z+(i/(√t)))(z−(i/(√t)))(z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))   (t>0)  so the poles of ϕ are +^− (i/(√( t)))  ,+^− e^((iπ)/4)  , +^−  e^(−((iπ)/4))    residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,(i/(√t))) +Res(ϕ,e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )}  the poles are simples so  Res(ϕ,(i/(√t))) =lim_(z→(i/(√t)))  (z−(i/(√t)))ϕ(z)=((−1)/(t^2 (((2i)/(√t)))(1+(1/t^2 )))) =((−(√t))/(2i(t^2  +1)))  Res(ϕ,e^((iπ)/4) ) =lim_(z→e^((iπ)/4) )     (z−e^((iπ)/4) )ϕ(z)=(i/((ti+1)(2e^((iπ)/4) )(2i)))  = (e^(−((iπ)/4)) /(4(1+it)))  Res(ϕ,−e^(−((iπ)/4)) ) =((−i)/((1−it)(−2i)(−2 e^(−((iπ)/4)) ))) =−(e^((iπ)/4) /(4(1−it))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{  ((−(√t))/(2i(t^2  +1))) +(e^(−((iπ)/4)) /(4(1+it))) −(e^((iπ)/4) /(4(1−it)))}  =((−π(√t))/(t^2  +1)) +((iπ)/2) {− 2iIm((e^((iπ)/4) /(1−it)))}  but   (e^((iπ)/4) /(1−it)) =(((1+it)((1/(√2)) +(i/(√2))))/(1+t^2 ))  =(((1+it)(1+i))/((√2)(t^2  +1))) =((1+i+it−t)/((√2)(t^2  +1))) =((1−t +(t+1)i)/((√2)(t^2  +1))) ⇒  Im((e^((iπ)/4) /(1−it))) =((1+t)/((√2)(t^2  +1)))  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =((−π(√t))/(t^2  +1)) +((π(1+t))/(t^2  +1))  =((−π(√t) +π +πt)/(t^2  +1)) =2f^′ (t) ⇒  f(t) = (1/2) ∫_0 ^t   ((πx−π(√x) +π)/(x^2  +1)) dt  +λ  ∫_0 ^t   ((πx−π(√x) +π)/(x^2  +1)) dt =(π/2)ln(t^2  +1) +(π/2) arctan(t)−(π/2) ∫_0 ^t  ((√x)/(x^2  +1)) dt  ∫_0 ^t   ((√x)/(x^2  +1)) dt =_((√x)=u)     ∫_0 ^(√t)     (u/(u^4  +1)) (2u)du =2 ∫_0 ^(√t)    (u^2 /(u^4  +1)) du ⇒  f(t) =(π/2)ln(1+t^2 )+(π/2) arctan(t)−π ∫_0 ^(√t) (u^2 /(1+u^4 )) du   (λ =f(0)=0) ⇒∫_0 ^∞   ((ln(1+x^2 ))/(1+x^4 )) dx =f(1)=  (π/2)ln(2) +(π^2 /8) −π ∫_0 ^1   (u^2 /(1+u^4 )) du

itsonlyatryletf(t)=0ln(1+tx2)1+x4dxwitht0wehavef(t)=0x2(1+tx2)(1+x4)dx2f(t)=+x2(1+tx2)(1+x4)dxletconsiderthecomplexfunctionφ(z)=z2(tz2+1)(z4+1)polesofφ?wehaveφ(z)=z2(tz+i)(tzi)(z2i)(z2+i)=z2t(z+it)(zit)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)(t>0)sothepolesofφare+it,+eiπ4,+eiπ4residustheoremgive+φ(z)dz=2iπ{Res(φ,it)+Res(φ,eiπ4)+Res(φ,eiπ4)}thepolesaresimplessoRes(φ,it)=limzit(zit)φ(z)=1t2(2it)(1+1t2)=t2i(t2+1)Res(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=i(ti+1)(2eiπ4)(2i)=eiπ44(1+it)Res(φ,eiπ4)=i(1it)(2i)(2eiπ4)=eiπ44(1it)+φ(z)dz=2iπ{t2i(t2+1)+eiπ44(1+it)eiπ44(1it)}=πtt2+1+iπ2{2iIm(eiπ41it)}buteiπ41it=(1+it)(12+i2)1+t2=(1+it)(1+i)2(t2+1)=1+i+itt2(t2+1)=1t+(t+1)i2(t2+1)Im(eiπ41it)=1+t2(t2+1)+φ(z)dz=πtt2+1+π(1+t)t2+1=πt+π+πtt2+1=2f(t)f(t)=120tπxπx+πx2+1dt+λ0tπxπx+πx2+1dt=π2ln(t2+1)+π2arctan(t)π20txx2+1dt0txx2+1dt=x=u0tuu4+1(2u)du=20tu2u4+1duf(t)=π2ln(1+t2)+π2arctan(t)π0tu21+u4du(λ=f(0)=0)0ln(1+x2)1+x4dx=f(1)=π2ln(2)+π28π01u21+u4du

Commented by maxmathsup by imad last updated on 30/May/19

let decompose F(u) =(u^2 /(u^4  +1)) ⇒F(u) =(u^2 /((u^2  +1)^2 −2u^2 ))  =(u^2 /((u^2 +(√2)u +1)(u^2 −(√2)u +1))) =((au +b)/(u^2  +(√2)u +1)) +((cu +d)/(u^2 −(√2)u +1))  F(−u) =F(u) ⇒((−au +b)/(u^2 −(√2)u +1)) +((−cu +d)/(u^2 +(√2)u +1)) =F(u) ⇒c=−a and   b=d ⇒F(u) =((au +b)/(u^2 +(√2)u +1)) +((−au +b)/(u^2 −(√2)u +1))  F(0) =0 =2b ⇒b=0   F(1) =(1/2) = (a/(2+(√2))) −(a/(2−(√2))) =(((2−(√2)−2−(√2))a)/2) ⇒1=−2(√2)a ⇒  a =−(1/(2(√2))) ⇒F(u) =−(1/(2(√2))) (u/(u^2  +(√2)u +1)) +(1/(2(√2))) (u/(u^2 −(√2)u +1)) ⇒  ∫_0 ^1  F(u)du  =−(1/(4(√2))) ∫_0 ^1  ((2u+(√2)−(√2))/(u^2  +(√2)u +1)) du +(1/(4(√2))) ∫_0 ^1  ((2u−(√2) +(√2))/(u^2 −(√2) u +1))du  =−(1/(4(√2)))[ln(u^2 +(√2)u +1)]_0 ^1  +(1/4) ∫_0 ^1   (du/(u^2  +(√2)u +1))  +(1/(4(√2)))[ln(u^2 −(√2)u +1)]_0 ^1  +(1/4) ∫_0 ^1  (du/(u^2 −(√2)u +1))  ∫_0 ^1      (du/(u^2  +(√2)u +1)) =∫_0 ^1   (du/(u^2  +2(1/(√2))u +(1/2) +(1/2))) =∫_0 ^1   (du/((u+(1/(√2)))^2  +(1/2)))  =_(u+(1/(√2))=(t/(√2)))     ∫_1 ^((√2) +1)      (dt/((√2)((1/2))(1+t^2 ))) =(√2) [arctan(t)]_1 ^((√2) +1)   =(√2){ arctan(1+(√2))−(π/4)}  ∫_0 ^1    (du/(u^2 −(√2)u +1)) =∫_0 ^1   (du/((u−(1/(√2)))^2  +(1/2))) =_(u−(1/(√2))=(t/(√2)))     ∫_(−1) ^((√2)−1)    (dt/((√2)((1/2))(1+t^2 )))  =(√2) [arctan(t)]_(−1) ^((√2)−1)  =(√2){ arctan((√2)−1)+(π/4)} ⇒  ∫_0 ^1  F(u)du =−(1/(4(√2)))ln(2+(√2)) +(1/(4(√2)))ln(2−(√2))+((√2)/4){arctan(1+(√2))−(π/4)}  +((√2)/4){arctan((√2)−1)−(π/4)} ⇒  ∫_0 ^∞  ((ln(1+x^2 ))/(1+x^4 )) dx =(π/2)ln(2)+(π^2 /8) +(π/(4(√2))){ln(((2−(√2))/(2+(√2))))}  −π((√2)/4){ arctan((√2) +1) +arctan((√2) −1)−(π/2)} .

letdecomposeF(u)=u2u4+1F(u)=u2(u2+1)22u2=u2(u2+2u+1)(u22u+1)=au+bu2+2u+1+cu+du22u+1F(u)=F(u)au+bu22u+1+cu+du2+2u+1=F(u)c=aandb=dF(u)=au+bu2+2u+1+au+bu22u+1F(0)=0=2bb=0F(1)=12=a2+2a22=(2222)a21=22aa=122F(u)=122uu2+2u+1+122uu22u+101F(u)du=142012u+22u2+2u+1du+142012u2+2u22u+1du=142[ln(u2+2u+1)]01+1401duu2+2u+1+142[ln(u22u+1)]01+1401duu22u+101duu2+2u+1=01duu2+212u+12+12=01du(u+12)2+12=u+12=t212+1dt2(12)(1+t2)=2[arctan(t)]12+1=2{arctan(1+2)π4}01duu22u+1=01du(u12)2+12=u12=t2121dt2(12)(1+t2)=2[arctan(t)]121=2{arctan(21)+π4}01F(u)du=142ln(2+2)+142ln(22)+24{arctan(1+2)π4}+24{arctan(21)π4}0ln(1+x2)1+x4dx=π2ln(2)+π28+π42{ln(222+2)}π24{arctan(2+1)+arctan(21)π2}.

Commented by ajfour last updated on 30/May/19

Congratulations Sir.   Wonderful spirit.

CongratulationsSir.Wonderfulspirit.

Commented by Tawa1 last updated on 30/May/19

Wow. God bless you sir.

Wow.Godblessyousir.

Commented by Tawa1 last updated on 30/May/19

I appreciate your time.

Iappreciateyourtime.

Commented by maxmathsup by imad last updated on 30/May/19

you are welcome sir.

youarewelcomesir.

Commented by perlman last updated on 30/May/19

verry good worck!

verrygoodworck!

Commented by maxmathsup by imad last updated on 31/May/19

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com