Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 61762 by mr W last updated on 08/Jun/19

Commented by mr W last updated on 08/Jun/19

(see also Q61612)  Find the relation between h, d and L  of a hanging rope.

(seealsoQ61612)Findtherelationbetweenh,dandLofahangingrope.

Answered by mr W last updated on 09/Jun/19

I. form of rope as catenary  y=a cosh (x/a)  at x=(d/2):  h+a=a cosh (d/(2a))  ⇒(1+(h/a))=cosh (d/(2a))     ...(i)  (L/2)=a sinh (d/(2a))  ⇒(L/(2a))=sinh (d/(2a))    ...(ii)  ⇒(1+(h/a))^2 −((L/(2a)))^2 =1  ⇒8ha+4h^2 −L^2 =0  ⇒a=((L^2 −4h^2 )/(8h))  from (i):  sinh (d/(2a))=((4Lh)/(L^2 −4h^2 ))  ⇒d={(((L^2 −4h^2 )/(4Lh))) sinh^(−1)  (((4Lh)/(L^2 −4h^2 )))}L  with κ=((L^2 −4h^2 )/(4Lh))  ⇒d=(κ sinh^(−1)  (1/κ))L    example: L=25m, h=7.5m  ⇒κ=((25^2 −4×7.5^2 )/(4×25×7.5))=(8/(15))  ⇒d≈0.73936L=18.48 m    let η=((2h)/d), λ=(L/d)  η×(d/(2a))=cosh (d/(2a))−1  ⇒η=((cosh (d/(2a))−1)/(d/(2a)))  λ×(d/(2a))=sinh (d/(2a))  ⇒λ=((sinh (d/(2a)))/(d/(2a)))  with parameter t=(d/(2a)) we get    { ((η=((cosh t−1)/t))),((λ=((sinh t)/t))) :}

I.formofropeascatenaryy=acoshxaatx=d2:h+a=acoshd2a(1+ha)=coshd2a...(i)L2=asinhd2aL2a=sinhd2a...(ii)(1+ha)2(L2a)2=18ha+4h2L2=0a=L24h28hfrom(i):sinhd2a=4LhL24h2d={(L24h24Lh)sinh1(4LhL24h2)}Lwithκ=L24h24Lhd=(κsinh11κ)Lexample:L=25m,h=7.5mκ=2524×7.524×25×7.5=815d0.73936L=18.48mletη=2hd,λ=Ldη×d2a=coshd2a1η=coshd2a1d2aλ×d2a=sinhd2aλ=sinhd2ad2awithparametert=d2aweget{η=cosht1tλ=sinhtt

Commented by Tawa1 last updated on 09/Jun/19

wow, God bless you sir

wow,Godblessyousir

Answered by mr W last updated on 08/Jun/19

II. form of rope as parabola  y=h(((2x)/d))^2   y′=((8hx)/d^2 )  (L/2)=∫_0 ^(d/2) (√(1+y′^2 )) dx=∫_0 ^(d/2) (√(1+(((8hx)/d^2 ))^2 )) dx  L=(d^2 /(4h))∫_0 ^(d/2) (√(1+(((8hx)/d^2 ))^2 )) d(((8hx)/d^2 ))  L=(d^2 /(4h))∫_0 ^((4h)/d) (√(1+t^2 )) dt  L=2h((d/(4h)))^2 [t(√(1+t^2 ))+ln (t+(√(1+t^2 )))]_0 ^((4h)/d)   with μ=((4h)/d)  ⇒L=((2h)/μ^2 )[μ(√(1+μ^2 ))+ln (μ+(√(1+μ^2 )))]  ⇒(L/(2h))=(1/μ^2 )[μ(√(1+μ^2 ))+ln (μ+(√(1+μ^2 )))]    example: L=25m, h=7.5m  (1/μ^2 )[μ(√(1+μ^2 ))+ln (μ+(√(1+μ^2 )))]=(5/3)  ⇒μ=1.6008  ⇒d=((4h)/μ)=18.74m    let η=((2h)/d), λ=(L/d)  ⇒λ=(1/(4η))[2η(√(1+4η^2 ))+ln (2η+(√(1+4η^2 )))]

II.formofropeasparabolay=h(2xd)2y=8hxd2L2=0d21+y2dx=0d21+(8hxd2)2dxL=d24h0d21+(8hxd2)2d(8hxd2)L=d24h04hd1+t2dtL=2h(d4h)2[t1+t2+ln(t+1+t2)]04hdwithμ=4hdL=2hμ2[μ1+μ2+ln(μ+1+μ2)]L2h=1μ2[μ1+μ2+ln(μ+1+μ2)]example:L=25m,h=7.5m1μ2[μ1+μ2+ln(μ+1+μ2)]=53μ=1.6008d=4hμ=18.74mletη=2hd,λ=Ldλ=14η[2η1+4η2+ln(2η+1+4η2)]

Commented by mr W last updated on 08/Jun/19

Commented by mr W last updated on 08/Jun/19

C=catenary, P=parabola  we can see the difference between both  is very small.

C=catenary,P=parabolawecanseethedifferencebetweenbothisverysmall.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com