All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 61809 by aliesam last updated on 09/Jun/19
Commented by maxmathsup by imad last updated on 10/Jun/19
letA=∫01xnln(x)dx⇒A=∫01xn−(−lnx)dx=1−1∫01xn−ln(x)dxchangement−ln(x)=tgive−ln(x)=t2⇒ln(x)=−t2⇒x=e−t2⇒A=1i∫+∞0e−nt2t(−2t)e−t2dt=2i∫0∞e−(n+1)t2dt=−2i∫0∞e−(n+1)t2dt=n+1t=u−2i∫0∞e−u2dun+1=−2in+1∫0∞e−u2du=−2in+1π2⇒A=−iπn+1.
Answered by perlman last updated on 09/Jun/19
ln(x)=i−ln(x)∀x∈]0;1]withe−ln(x)=yx=e−y2=∫+∞0e−ny2iy(−2y)e−y2dy=i∫0+∞e−(n+1)y2dyletz=(n+1)ydz=n+1dy=i∫0+∞n+1e−z2dz=in+1∫0+∞e−z2dz=in+1π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com