All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 61834 by aliesam last updated on 09/Jun/19
Commented by maxmathsup by imad last updated on 09/Jun/19
letAn={1p∑k=1p(1+kp)1n}n⇒ln(An)=nln(1p∑k=1p(1+kp)1n)wehavelimp→+∞1p∑k=1p(1+kp)1n=∫01(1+x)1ndx=[11+1n(1+x)1n+1]01=nn+1{2n+1n−1}⇒ln(An)=nln{nn+1(21+1n−1)}wehave21+1n−1=2eln(2)n−1∼2{1+ln(2)n}−1=1+2nln(2)⇒nn+1(21+1n−1)∼nn+1(1+2nln(2))=nn+1+2n+1ln(2)⇒nln{nn+1(21+1n−1)}∼nln(nn+1+2n+1ln(2))butnln(nn+1+2ln(2)n+1)=nln(1−1n+1+2ln(2)n+1)∼n(−1n+1+2ln(2)n+1)=nn+1{−1+2ln(2)}→2ln(2)−1⇒limn→+∞An=e2ln(2)−1=4e⇒limn→+∞Xn=4e.
Commented by aliesam last updated on 09/Jun/19
brilliantsolthankyousiryouaregraet
youarewelcomesirissam.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com