Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62981 by hovea cw last updated on 27/Jun/19

Commented by mathmax by abdo last updated on 27/Jun/19

2) let A =∫_0 ^(2π)   ((x∣sin(2x)∣)/(3+sin^2 x)) dx changement x =π +t give  A =∫_(−π) ^π   (((π+t)∣sin(2t)∣)/(3+sin^2 t)) dt = ∫_(−π) ^0  (((π+t)∣sin(2t)∣)/(3+sin^2 t)) dt +∫_0 ^π  (((π+t)∣sin(2t)∣)/(3+sin^2 t)) dt  ∫_(−π) ^0  (((π+t)∣sin(2t)∣)/(3+sin^2 t)) dt =_(t=−u)    −∫_0 ^π  (((π−u)∣sin(2u)∣)/(3+sin^2 u))(−du) ⇒  A = ∫_0 ^π  (((π+t+π−t)∣sin(2t)∣)/(3+sin^2 t)) dt =2π ∫_0 ^π   ((∣sin(2t)∣)/(3+sin^2 t))dt  =_(2t =x)      2π ∫_0 ^(2π)   ((∣sin(x)∣)/(3+sin^2 ((x/2)))) (dx/2) =π { ∫_0 ^π   ((sinx)/(3+sin^2 ((x/2))))dx +∫_π ^(2π)   ((∣sinx∣)/(3+sin^2 ((x/2))))dx}  ∫_π ^(2π)   ((∣sinx∣)/(3+sin^2 ((x/2))))dx =_(x =π +α)     ∫_0 ^π   ((sin(α))/(3+sin^2 ((π/2)+(α/2)))) dα =∫_0 ^π   ((sin(α))/(3+cos^2 ((α/2))))dα ⇒  A =π { ∫_0 ^π   ((sin(x))/(3+sin^2 ((x/2))))dx +∫_0 ^π   ((sinx)/(3+cos^2 ((x/2))))dx}  =π ∫_0 ^π  sinx(7/((3+sin^2 ((x/2)))(3+cos^2 ((x/2))))dx =7π ∫_0 ^π     ((sinx)/((3+((1−cosx)/2))(3+((1+cosx)/2))))dx  =28π∫_0 ^π  sinx{(1/(7−cosx)) +(1/(7+cosx))}dx  =28π { ∫_0 ^π    ((sinx)/(7−cosx))dx +∫_0 ^π  ((sinx)/(7 +cosx))dx}  =28π{  [ln∣7−cosx∣]_0 ^π  −[ln∣7+cosx∣]_0 ^π }  =28π{ ln(8)−ln(6)−ln(6) +ln(8)} =28π{2ln(8)−2ln(6)}  =56π{ln(8)−ln(6)} =56π{3ln(2)−ln(2)−ln(3)} ⇒  A =56π{2ln(2)−ln(3)} .

2)letA=02πxsin(2x)3+sin2xdxchangementx=π+tgiveA=ππ(π+t)sin(2t)3+sin2tdt=π0(π+t)sin(2t)3+sin2tdt+0π(π+t)sin(2t)3+sin2tdtπ0(π+t)sin(2t)3+sin2tdt=t=u0π(πu)sin(2u)3+sin2u(du)A=0π(π+t+πt)sin(2t)3+sin2tdt=2π0πsin(2t)3+sin2tdt=2t=x2π02πsin(x)3+sin2(x2)dx2=π{0πsinx3+sin2(x2)dx+π2πsinx3+sin2(x2)dx}π2πsinx3+sin2(x2)dx=x=π+α0πsin(α)3+sin2(π2+α2)dα=0πsin(α)3+cos2(α2)dαA=π{0πsin(x)3+sin2(x2)dx+0πsinx3+cos2(x2)dx}=π0πsinx7(3+sin2(x2))(3+cos2(x2)dx=7π0πsinx(3+1cosx2)(3+1+cosx2)dx=28π0πsinx{17cosx+17+cosx}dx=28π{0πsinx7cosxdx+0πsinx7+cosxdx}=28π{[ln7cosx]0π[ln7+cosx]0π}=28π{ln(8)ln(6)ln(6)+ln(8)}=28π{2ln(8)2ln(6)}=56π{ln(8)ln(6)}=56π{3ln(2)ln(2)ln(3)}A=56π{2ln(2)ln(3)}.

Answered by Hope last updated on 27/Jun/19

1)∫(√(tanx +1)) dx  t^2 =1+tanx   →2tdt=sec^2 xdx  ((2tdt)/(1+(t^2 −1)^2 ))=dx  ∫((t×2tdt)/(t^4 −2t^2 +2))  ∫((2/t^2 )/(t^2 +(2/t^2 )−2))dt  (1/(√2))∫(((1+((√2)/t^2 ))−(1−((√2)/t^2 )))/((t^2 +(2/t^2 ))−2))dt  (1/(√2))[∫((d(t−((√2)/t)))/((t−((√2)/t))^2 +2(√2) −2))−∫((d(t+((√2)/t)))/((t+((√2)/t))^2 −2(√2) −2))  =(1/(√2))[(1/(√(2(√2) −2)))×tan^(−1) (((t−((√2)/t)))/(√(2(√2) −2))))−(1/(2((√(2(√2) +2))))ln(((t+((√2)/t))−(√(2(√2) +2 )))/((t+((√2)/t))+(√(2(√2) +2)))))  put t=(√(1+tanx))

1)tanx+1dxt2=1+tanx2tdt=sec2xdx2tdt1+(t21)2=dxt×2tdtt42t2+22t2t2+2t22dt12(1+2t2)(12t2)(t2+2t2)2dt12[d(t2t)(t2t)2+222d(t+2t)(t+2t)2222=12[1222×tan1(t2t)222)12(22+2ln(t+2t)22+2(t+2t)+22+2)putt=1+tanx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com