All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62981 by hovea cw last updated on 27/Jun/19
Commented by mathmax by abdo last updated on 27/Jun/19
2)letA=∫02πx∣sin(2x)∣3+sin2xdxchangementx=π+tgiveA=∫−ππ(π+t)∣sin(2t)∣3+sin2tdt=∫−π0(π+t)∣sin(2t)∣3+sin2tdt+∫0π(π+t)∣sin(2t)∣3+sin2tdt∫−π0(π+t)∣sin(2t)∣3+sin2tdt=t=−u−∫0π(π−u)∣sin(2u)∣3+sin2u(−du)⇒A=∫0π(π+t+π−t)∣sin(2t)∣3+sin2tdt=2π∫0π∣sin(2t)∣3+sin2tdt=2t=x2π∫02π∣sin(x)∣3+sin2(x2)dx2=π{∫0πsinx3+sin2(x2)dx+∫π2π∣sinx∣3+sin2(x2)dx}∫π2π∣sinx∣3+sin2(x2)dx=x=π+α∫0πsin(α)3+sin2(π2+α2)dα=∫0πsin(α)3+cos2(α2)dα⇒A=π{∫0πsin(x)3+sin2(x2)dx+∫0πsinx3+cos2(x2)dx}=π∫0πsinx7(3+sin2(x2))(3+cos2(x2)dx=7π∫0πsinx(3+1−cosx2)(3+1+cosx2)dx=28π∫0πsinx{17−cosx+17+cosx}dx=28π{∫0πsinx7−cosxdx+∫0πsinx7+cosxdx}=28π{[ln∣7−cosx∣]0π−[ln∣7+cosx∣]0π}=28π{ln(8)−ln(6)−ln(6)+ln(8)}=28π{2ln(8)−2ln(6)}=56π{ln(8)−ln(6)}=56π{3ln(2)−ln(2)−ln(3)}⇒A=56π{2ln(2)−ln(3)}.
Answered by Hope last updated on 27/Jun/19
1)∫tanx+1dxt2=1+tanx→2tdt=sec2xdx2tdt1+(t2−1)2=dx∫t×2tdtt4−2t2+2∫2t2t2+2t2−2dt12∫(1+2t2)−(1−2t2)(t2+2t2)−2dt12[∫d(t−2t)(t−2t)2+22−2−∫d(t+2t)(t+2t)2−22−2=12[122−2×tan−1(t−2t)22−2)−12(22+2ln(t+2t)−22+2(t+2t)+22+2)putt=1+tanx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com