Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 63642 by bshahid010@gmail.com last updated on 06/Jul/19

Commented by kaivan.ahmadi last updated on 06/Jul/19

(x+2)(x^2 −2x+4)=0⇒  x=−2⇒γ=−2⇒γ^2 =4  α,β are the roots of x^2 −2x+4=0  the equation is  (x−α^2 )(x−β^2 )(x−4)=0  (x^2 −(α^2 +β^2 )x+α^2 β^2 )(x−4)=0  but   α+β=2,αβ=4  α^2 +β^2 =(α+β)^2 −2αβ=4−8=−4  α^2 β^2 =(αβ)^2 =16  so the equation is  (x^2 +4x+16)(x−4)=0⇒  x^3 −4x^2 +4x^2 −16x+16x−64=0⇒  x^3 −64=0

(x+2)(x22x+4)=0x=2γ=2γ2=4α,βaretherootsofx22x+4=0theequationis(xα2)(xβ2)(x4)=0(x2(α2+β2)x+α2β2)(x4)=0butα+β=2,αβ=4α2+β2=(α+β)22αβ=48=4α2β2=(αβ)2=16sotheequationis(x2+4x+16)(x4)=0x34x2+4x216x+16x64=0x364=0

Answered by MJS last updated on 06/Jul/19

x^3 −8^2 =0

x382=0

Answered by MJS last updated on 06/Jul/19

x^3 =−8  x_1 =−2 ⇒ x_1 ^2 =4  x_2 =2e^(i(π/3))  ⇒ x_2 ^2 =4e^(i((2π)/3))   x_3 =2e^(−i(π/3))  ⇒ x_3 ^2 =4e^(−i((2π)/3))   we know that x_1 ^3 =64 ⇒ the equation is  x^3 =64  to be sure:  (x−4)(x−4e^(i((2π)/3)) )(x−4e^(−i((2π)/3)) )=  =(x−4)(x^2 −4x(e^(i((2π)/3)) +e^(−i((2π)/3)) )+16)=  =(x−4)(x^2 −4x(−1)+16)=  =(x−4)(x^2 +4x+16)=x^3 −64

x3=8x1=2x12=4x2=2eiπ3x22=4ei2π3x3=2eiπ3x32=4ei2π3weknowthatx13=64theequationisx3=64tobesure:(x4)(x4ei2π3)(x4ei2π3)==(x4)(x24x(ei2π3+ei2π3)+16)==(x4)(x24x(1)+16)==(x4)(x2+4x+16)=x364

Terms of Service

Privacy Policy

Contact: info@tinkutara.com