All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 63642 by bshahid010@gmail.com last updated on 06/Jul/19
Commented by kaivan.ahmadi last updated on 06/Jul/19
(x+2)(x2−2x+4)=0⇒x=−2⇒γ=−2⇒γ2=4α,βaretherootsofx2−2x+4=0theequationis(x−α2)(x−β2)(x−4)=0(x2−(α2+β2)x+α2β2)(x−4)=0butα+β=2,αβ=4α2+β2=(α+β)2−2αβ=4−8=−4α2β2=(αβ)2=16sotheequationis(x2+4x+16)(x−4)=0⇒x3−4x2+4x2−16x+16x−64=0⇒x3−64=0
Answered by MJS last updated on 06/Jul/19
x3−82=0
x3=−8x1=−2⇒x12=4x2=2eiπ3⇒x22=4ei2π3x3=2e−iπ3⇒x32=4e−i2π3weknowthatx13=64⇒theequationisx3=64tobesure:(x−4)(x−4ei2π3)(x−4e−i2π3)==(x−4)(x2−4x(ei2π3+e−i2π3)+16)==(x−4)(x2−4x(−1)+16)==(x−4)(x2+4x+16)=x3−64
Terms of Service
Privacy Policy
Contact: info@tinkutara.com