Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 6432 by Rasheed Soomro last updated on 27/Jun/16

Commented by Rasheed Soomro last updated on 27/Jun/16

Question reposted  ∣GH∣=? , ∣HI∣=? ,∣IG∣=?

QuestionrepostedGH∣=?,HI∣=?,IG∣=?

Commented by Yozzii last updated on 01/Jul/16

Vector Analysis Method  −−−−−−−−−−−−−−−−−−−−−−−−  Let ⟨AB⟩=a and ⟨AC⟩=b. (a≠−b)  ⟨AF⟩=a+0.5(b−a)=0.5(a+b).  Let ⟨AH⟩=μ⟨AF⟩, μ>0. ∣AH∣=∣AB∣=∣a∣.  ∣AH∣=μ∣AF∣⇒μ=((∣AH∣)/(∣AF∣))=((2∣a∣)/(∣a+b∣)).  ∴ ⟨AH⟩=((2∣a∣)/(∣a+b∣))0.5(a+b)  ⟨AH⟩=((∣a∣)/(∣a+b∣))(a+b).  ⟨BD⟩=−a+0.5b.  Let ⟨BG⟩=λ⟨BD⟩, λ>0.  ⇒λ=((∣BG∣)/(∣BD∣))=((∣CB∣)/(0.5∣b−2a∣))=2((∣a−b∣)/(∣b−2a∣)).  ∴⟨BG⟩=((∣a−b∣)/(∣b−2a∣))(b−2a).  ⟨AG⟩=⟨AB⟩+⟨BG⟩  ⟨AG⟩=a+((∣a−b∣)/(∣b−2a∣))(b−2a)  ⟨AG⟩=(1−((2∣a−b∣)/(∣b−2a∣)))a+((∣a−b∣)/(∣b−2a∣))b.  ⟨AH⟩=((∣a∣)/(∣a+b∣))a+((∣a∣)/(∣a+b∣))b  ⟨GH⟩=⟨AH⟩−⟨AG⟩  ⟨GH⟩=(−1+((2∣a−b∣)/(∣b−2a∣))+((∣a∣)/(∣a+b∣)))a+(((∣a∣)/(∣a+b∣))−((∣a−b∣)/(∣b−2a∣)))b  Let n=−1+((2∣a−b∣)/(∣b−2a∣))+((∣a∣)/(∣a+b∣)) and m=((∣a∣)/(∣a+b∣))−((∣a−b∣)/(∣b−2a∣)).  ∴ ⟨GH⟩=na+mb  ⇒∣GH∣^2 =⟨GH⟩.⟨GH⟩  ∣GH∣^2 =n^2 a.a+2nma.b+m^2 b.b  ∣GH∣=(√(n^2 ∣a∣^2 +m^2 ∣b∣^2 +2mna.b))  Let θ=∠CAB.  ∴ a.b=∣a∣∣b∣cosθ   ∴∣GH∣=(√(n^2 ∣a∣^2 +m^2 ∣b∣^2 +mn(2∣a∣∣b∣cosθ)))  By law of cosines,   2∣a∣∣b∣cosθ=−∣a−b∣^2 +∣a∣^2 +∣b∣^2   ∴∣GH∣=(√(n(n+m)∣a∣^2 +m(m+n)∣b∣^2 −mn∣a−b∣^2 ))  ∣GH∣=(√((n+m)(n∣a∣^2 +m∣b∣^2 )−mn∣a−b∣^2 ))  It can be shown that   ∣a+b∣^2 =2(∣a∣^2 +∣b∣^2 )−∣a−b∣^2   ⇒∣a+b∣=(√(2(∣a∣^2 +∣b∣^2 )−∣a−b∣^2 ))>0  ∣b−2a∣^2 =∣b∣^2 +4∣a∣^2 −2×2∣b∣∣a∣cosθ  ∣b−2a∣^2 =−∣b∣^2 +2∣a∣^2 +2∣a−b∣^2   ∣b−2a∣=(√(2(∣a∣^2 +∣a−b∣^2 )−∣b∣^2 ))  Let ∣a∣=c>0, ∣b∣=b>0 and ∣a−b∣=a>0.  −−−−−−−−−−−−−−−−−−−−−−−−−−−  For △GHI constructed from △ABC,  in such a way as above,  ∴∣GH∣=(√((n+m)(nc^2 +mb^2 )−mna^2 ))  where  n=−1+((2a)/(√(2(c^2 +a^2 )−b^2 )))+(c/(√(2(c^2 +b^2 )−a^2 )))  m=(c/(√(2(c^2 +b^2 )−a^2 )))−(a/(√(2(c^2 +a^2 )−b^2 )))  −−−−−−−−−−−−−−−−−−−−−−−−−  A similar analysis can be used to  find the remaining lengths. Try it!  (Cyclic permutation of abc I guess is possible.)

VectorAnalysisMethodLetAB=aandAC=b.(ab)AF=a+0.5(ba)=0.5(a+b).LetAH=μAF,μ>0.AH∣=∣AB∣=∣a.AH∣=μAF∣⇒μ=AHAF=2aa+b.AH=2aa+b0.5(a+b)AH=aa+b(a+b).BD=a+0.5b.LetBG=λBD,λ>0.λ=BGBD=CB0.5b2a=2abb2a.BG=abb2a(b2a).AG=AB+BGAG=a+abb2a(b2a)AG=(12abb2a)a+abb2ab.AH=aa+ba+aa+bbGH=AHAGGH=(1+2abb2a+aa+b)a+(aa+babb2a)bLetn=1+2abb2a+aa+bandm=aa+babb2a.GH=na+mb⇒∣GH2=GH.GHGH2=n2a.a+2nma.b+m2b.bGH∣=n2a2+m2b2+2mna.bLetθ=CAB.a.b=∣a∣∣bcosθ∴∣GH∣=n2a2+m2b2+mn(2a∣∣bcosθ)Bylawofcosines,2a∣∣bcosθ=ab2+a2+b2∴∣GH∣=n(n+m)a2+m(m+n)b2mnab2GH∣=(n+m)(na2+mb2)mnab2Itcanbeshownthata+b2=2(a2+b2)ab2⇒∣a+b∣=2(a2+b2)ab2>0b2a2=∣b2+4a22×2b∣∣acosθb2a2=b2+2a2+2ab2b2a∣=2(a2+ab2)b2Leta∣=c>0,b∣=b>0andab∣=a>0.ForGHIconstructedfromABC,insuchawayasabove,∴∣GH∣=(n+m)(nc2+mb2)mna2wheren=1+2a2(c2+a2)b2+c2(c2+b2)a2m=c2(c2+b2)a2a2(c2+a2)b2Asimilaranalysiscanbeusedtofindtheremaininglengths.Tryit!(CyclicpermutationofabcIguessispossible.)

Commented by Rasheed Soomro last updated on 01/Jul/16

THankS!  Your approach is always reliable  but I need to revise my knowledge  about vector analysis.

THankS!YourapproachisalwaysreliablebutIneedtorevisemyknowledgeaboutvectoranalysis.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com