All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 64686 by ajfour last updated on 20/Jul/19
Answered by ajfour last updated on 20/Jul/19
LetBbeoriginandxaxisalongBC.x2+y2=c2(x−a)2+y2=b2⇒a(2x−a)=c2−b2x=a2+c2−b22ay=c2−(a2+c2−b22a)2△2=a2y24=a24[(2ac−a2−c2+b2)(2ac+a2+c2−b24a2]=[b2−(a−c)2][(a+c)2−b2]16⇒16△2=−(a2−c2)2−b4+2b2(a2+c2)=−a4−b4−c4+2(a2c2+b2c2+c2a2)=2Σa2b2−Σa4=4Σa2b2−(Σa2)2=4Σa2b2−[(a+b+c)2−2Σab]2=4Σa2b2−[16s4−16s2Σab+4(Σab)2]=−16s4+16s2Σab−16(abc)s⇒△=s2Σab−s4−(abc)s△=s[s(ab+bc+ca)−s3−abc]=s[s(ab+bc+ca)+s3−s(a+b+c)−abc⇒__________________________△=s(s−a)(s−b)(s−c)__________________________
Commented by mr W last updated on 20/Jul/19
what′sthequestionsir?
Commented by ajfour last updated on 20/Jul/19
NothingSir,justwhilingawaymytime.(⌢∙∣⌣⌢∙∂
Terms of Service
Privacy Policy
Contact: info@tinkutara.com