Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 64951 by naka3546 last updated on 23/Jul/19

Answered by mr W last updated on 23/Jul/19

Commented by mr W last updated on 23/Jul/19

Δ_(BFC) =((2 tan β)/2)=tan β  ((BD)/(sin β))=((BC)/(sin 3β))  ⇒BD=((2 sin β)/(sin 3β))  Δ_(BDC) =((BC×BD sin 2β)/2)=((2 sin β sin 2β)/(sin 3β))  Δ_(BAC) =((2 tan 2β)/2)=tan 2β  ΔADFE=Δ_(BAC) −Δ_(BFC) −2(Δ_(BDC) −Δ_(BFC) )  =Δ_(BAC) −2Δ_(BDC) +Δ_(BFC) =2Δ_(BFC)   ⇒Δ_(BAC) −2Δ_(BDC) =Δ_(BFC)   ⇒tan 2β−((4 sin β sin 2β)/(sin 3β))=tan β  ⇒((sin 2β)/(cos 2β))−((4 sin 2β)/(3−4 sin^2  β))=((sin β)/(cos β))  ⇒(2/(2 cos^2  β−1))−(8/(4 cos^2  β−1))=(1/(cos^2  β))  let λ=cos^2  β  ⇒(2/(2λ−1))−(8/(4λ−1))=(1/λ)  ⇒((2(4λ−1)−8(2λ−1))/((2λ−1)(4λ−1)))=(1/λ)  ⇒((−8λ+6)/((2λ−1)(4λ−1)))=(1/λ)  16λ^2 −12λ+1=0  ⇒λ=cos^2  β=((3±(√5))/8)  ⇒ β=cos^(−1) ((√(6±2(√5)))/4)=cos^(−1) (((√5)±1)/4)  ⇒β=36° or 72°  β=36° is suitable  ⇒α=180−2×2×36=36°

ΔBFC=2tanβ2=tanβBDsinβ=BCsin3βBD=2sinβsin3βΔBDC=BC×BDsin2β2=2sinβsin2βsin3βΔBAC=2tan2β2=tan2βΔADFE=ΔBACΔBFC2(ΔBDCΔBFC)=ΔBAC2ΔBDC+ΔBFC=2ΔBFCΔBAC2ΔBDC=ΔBFCtan2β4sinβsin2βsin3β=tanβsin2βcos2β4sin2β34sin2β=sinβcosβ22cos2β184cos2β1=1cos2βletλ=cos2β22λ184λ1=1λ2(4λ1)8(2λ1)(2λ1)(4λ1)=1λ8λ+6(2λ1)(4λ1)=1λ16λ212λ+1=0λ=cos2β=3±58β=cos16±254=cos15±14β=36°or72°β=36°issuitableα=1802×2×36=36°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com