Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 65128 by Tawa1 last updated on 25/Jul/19

Answered by ajfour last updated on 25/Jul/19

Commented by ajfour last updated on 25/Jul/19

OP =8  with O as origin  P (4, (√(64−16))) ≡(4, 4(√3))  OQ=8(√2)  eq. of OQ is  y−x=0  ⊥ distance of P from line OQ     p= ((4(√3)−4)/(√2))  shaded area= Area(△OPQ)         =(1/2)×8(√2)×((4((√3)−1))/(√2))         =16((√3)−1) .

OP=8withOasoriginP(4,6416)(4,43)OQ=82eq.ofOQisyx=0distanceofPfromlineOQp=4342shadedarea=Area(OPQ)=12×82×4(31)2=16(31).

Commented by Tawa1 last updated on 25/Jul/19

God bless you sir

Godblessyousir

Commented by Tawa1 last updated on 25/Jul/19

I appreciate sir

Iappreciatesir

Commented by Tawa1 last updated on 25/Jul/19

Commented by Tawa1 last updated on 25/Jul/19

This sir

Thissir

Commented by mr W last updated on 25/Jul/19

Commented by mr W last updated on 25/Jul/19

DC=DB=DE=r  CF=((CB)/2)=2  ((CF)/(CD))=((CD)/(AC))  CD^2 =CF×AC  ⇒r^2 =2×9=18  ⇒r=3(√2)

DC=DB=DE=rCF=CB2=2CFCD=CDACCD2=CF×ACr2=2×9=18r=32

Answered by mr W last updated on 25/Jul/19

Commented by mr W last updated on 25/Jul/19

OC=OP=CP=r=8  ⇒∠OCP=60°=(π/3)  ⇒∠PCQ=30°=(π/6)  A_(shade) =Cap_(OQ) −Cap_(OP) −Cap_(PQ)   =(r^2 /2)((π/2)−sin (π/2))−(r^2 /2)((π/3)−sin (π/3))−(r^2 /2)((π/6)−sin (π/6))  =(r^2 /2)((π/2)−(π/3)−(π/6)−sin (π/2)+sin (π/3)+sin (π/6))  =((64)/2)(−1+(1/2)+((√3)/2))  =16((√3)−1)

OC=OP=CP=r=8OCP=60°=π3PCQ=30°=π6Ashade=CapOQCapOPCapPQ=r22(π2sinπ2)r22(π3sinπ3)r22(π6sinπ6)=r22(π2π3π6sinπ2+sinπ3+sinπ6)=642(1+12+32)=16(31)

Commented by mr W last updated on 25/Jul/19

An other way:  A_(shade) =(1/2)×OP×OQ×sin ∠POQ  =(1/2)×8×8(√2)×sin (60°−45°)  =32(√2)×(((√3)/2)×(1/(√2))−(1/2)×(1/(√2)))  =16((√3)−1)

Anotherway:Ashade=12×OP×OQ×sinPOQ=12×8×82×sin(60°45°)=322×(32×1212×12)=16(31)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com