Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 65199 by rajesh4661kumar@gmail.com last updated on 26/Jul/19

Answered by Tanmay chaudhury last updated on 26/Jul/19

(1),(2,3,4),(5,6,7,8,9),(10,11,12,13,14,15,16)...  1st group  contains→                         1 terms  2nd group contains →                        3 terms  3rd   group   contains→                      5terms  4th    grouo contains   →                    7terms  .....  .....  nth group contains    →{1+(n−1)2}→     2n−1 terms  determination of first term of nth group  let t_n =be the first term of nth group  taking the first term of each group  S=1+2+5+10+17+....+t_n      (←total nterms)  S=        1+2 +5+10+....+t_(n−1) +t_n (←total n terms)  substructing   0=1+1+3+5+7+....−t_n   (←total n+1 terms)  t_n =1+1+3+5+7.....(←total nterms)  t_n =1+(1+3+5+7+...←total n−1 terms)  t_n =1+((n−1)/2)[2×1+(n−1−1)×2]  t_n =1+((n−1)/2)×(2n−2)  t_n =n^2 −2n+2  so sum of terms in nth group is  S_(nth) =((2n−1)/2)[2t_n +(2n−1−1)×1]  =((2n−1)/2)[2n^2 −4n+4+2n−2]  =(2n−1)(n^2 −n+1)  =2n^3 −2n^2 +2n−n^2 +n−1  =n^3 +n^3 −3n^2 +3n−1  =(n)^3 +(n−1)^3    proved

(1),(2,3,4),(5,6,7,8,9),(10,11,12,13,14,15,16)...1stgroupcontains1terms2ndgroupcontains3terms3rdgroupcontains5terms4thgrouocontains7terms..........nthgroupcontains{1+(n1)2}2n1termsdeterminationoffirsttermofnthgrouplettn=bethefirsttermofnthgrouptakingthefirsttermofeachgroupS=1+2+5+10+17+....+tn(totalnterms)S=1+2+5+10+....+tn1+tn(totalnterms)substructing0=1+1+3+5+7+....tn(totaln+1terms)tn=1+1+3+5+7.....(totalnterms)tn=1+(1+3+5+7+...totaln1terms)tn=1+n12[2×1+(n11)×2]tn=1+n12×(2n2)tn=n22n+2sosumoftermsinnthgroupisSnth=2n12[2tn+(2n11)×1]=2n12[2n24n+4+2n2]=(2n1)(n2n+1)=2n32n2+2nn2+n1=n3+n33n2+3n1=(n)3+(n1)3proved

Commented by peter frank last updated on 26/Jul/19

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com