Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 65325 by Tawa1 last updated on 28/Jul/19

Commented by Tony Lin last updated on 28/Jul/19

(a)(i)  (i)OE^→ =λOD^→ +(1−λ)OC^→                =λ(4b^→ )+(1−λ)((4/3)a^→ )   (i i)    =μOB^→ +(1−μ)OA^→                =μ(2b^→ )+(1−μ)(2a^→ )  (b)OE^→ =λOD^→ +(1−λ)OC^→                =λ(2OB^→ )+(1−λ)((2/3)OA^→ )  ⇒(4/3)λ+(2/3)=1⇒λ=(1/4)  ⇒OE^→ =(1/4)OD^→ +(3/4)OC^→   ⇒CE: ED=1: 3  2λ=μ  ⇒μ=(1/2)  ⇒OE^→ =(1/2)OB^→ +(1/2)OA^→   ⇒AE: EB=1: 1

(a)(i)(i)OE=λOD+(1λ)OC=λ(4b)+(1λ)(43a)(ii)=μOB+(1μ)OA=μ(2b)+(1μ)(2a)(b)OE=λOD+(1λ)OC=λ(2OB)+(1λ)(23OA)43λ+23=1λ=14OE=14OD+34OCCE:ED=1:32λ=μμ=12OE=12OB+12OAAE:EB=1:1

Commented by Tony Lin last updated on 28/Jul/19

or you can use Menelaus theorem  ((AC)/(CO))×((OD)/(DB))×((BE)/(EA))=1  (1/2)×(2/1)×((BE)/(EA))=1  ⇒BE: EA=1: 1  ⇒OE^→ =(1/2)OA^→ +(1/2)OB^→   ⇒μ=(1/2)  ((DB)/(BO))×((OA)/(AC))×((CE)/(ED))=1  (1/1)×(3/1)×((CE)/(ED))=1  ⇒CE: ED=1: 3  ⇒OE^→ =(1/4)OD^→ +(3/4)OC^→   ⇒λ=(1/4)

oryoucanuseMenelaustheoremACCO×ODDB×BEEA=112×21×BEEA=1BE:EA=1:1OE=12OA+12OBμ=12DBBO×OAAC×CEED=111×31×CEED=1CE:ED=1:3OE=14OD+34OCλ=14

Commented by Tawa1 last updated on 28/Jul/19

God bless you sir. I appreciate your time

Godblessyousir.Iappreciateyourtime

Answered by mr W last updated on 28/Jul/19

(a)  (i)  CD=−CO+OD=−(4/3)a+4b  CE=λCD=−((4λ)/3)a+4λb  ⇒OE=OC+CE=(4/3)a−((4λ)/3)a+4λb=((4(1−λ))/3)a+4λb  (ii)  AB=AO+OB=−2a+2b  AE=μAB=−2μa+2μb  OE=OA+AE=2a−2μa+2μb=2(1−μ)a+2μb    (b)  ((4(1−λ))/3)=2(1−μ)  ⇒2(1−λ)=3(1−μ)  ⇒3μ−2λ=1      ...(i)  4λ=2μ  ⇒2λ−μ=0   ...(ii)  from (i) and (ii):  6λ−2λ=1  ⇒λ=(1/4)  ⇒μ=(1/2)

(a)(i)CD=CO+OD=43a+4bCE=λCD=4λ3a+4λbOE=OC+CE=43a4λ3a+4λb=4(1λ)3a+4λb(ii)AB=AO+OB=2a+2bAE=μAB=2μa+2μbOE=OA+AE=2a2μa+2μb=2(1μ)a+2μb(b)4(1λ)3=2(1μ)2(1λ)=3(1μ)3μ2λ=1...(i)4λ=2μ2λμ=0...(ii)from(i)and(ii):6λ2λ=1λ=14μ=12

Commented by Tawa1 last updated on 28/Jul/19

God bless you sir, i appreciate your time

Godblessyousir,iappreciateyourtime

Terms of Service

Privacy Policy

Contact: info@tinkutara.com