Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65740 by rajesh4661kumar@gmail.com last updated on 03/Aug/19

Commented by mathmax by abdo last updated on 03/Aug/19

let A = ∫   (dx/((1/(cosx)) +sinx)) ⇒ A =∫ ((cosx)/(1+cosx sinx))dx changement  tan((x/(2 ))) =t give A =∫   (((1−t^2 )/(1+t^2 ))/(1+((2t(1−t^2 ))/((1+t^2 )^2 )))) ((2dt)/(1+t^2 ))  = ∫   ((1−t^2 )/((1+t^2 )^2 {1+((2t(1−t^2 ))/((1+t^2 )^2 ))}))dt =∫   ((1−t^2 )/((1+t^2 )^2  +2t(1−t^2 )))dt  =∫   ((1−t^2 )/(t^4  +2t^2 +1 +2t−2t^3 ))dt =∫  ((1−t^2 )/(t^4 −2t^3 +2t +1))dt  let decompose F(t) =((1−t^2 )/(t^4 −2t^3  +2t +1))  t^4 −2t^3  +2t +1 =0  the roots are  z_1 =1,5291 +0,7429i  =α+iβ  z_2 =1,5291−0,7429 i (=z_1 ^− ) =α−iβ  z_3 =−0,5291 +0,2571i =−α+iλ  z_4 =−0,5291 −0,2571 i(=z_3 ^− ) =−α−iλ  ⇒F(t)=((1−t^2 )/((t−z_1 )(t−z_1 ^− )(t−z_3 )(t−z_3 ^− )))  =((1−t^2 )/((t^2 −2Re(z_1 )t +∣z_1 ∣^2 )(t^2 −2Re(z_3 )t +∣z_3 ^2 ∣)))  =((1−t^2 )/((t^2 −2αt  +α^2  +β^2 )(t^2 +2αt +α^2  +λ^2 )))  =((at +b)/(t^2 −2αt +α^2  +β^2 )) +((ct +d)/(t^2  +2αt +α^2  +λ^2 )) ....be continued...

letA=dx1cosx+sinxA=cosx1+cosxsinxdxchangementtan(x2)=tgiveA=1t21+t21+2t(1t2)(1+t2)22dt1+t2=1t2(1+t2)2{1+2t(1t2)(1+t2)2}dt=1t2(1+t2)2+2t(1t2)dt=1t2t4+2t2+1+2t2t3dt=1t2t42t3+2t+1dtletdecomposeF(t)=1t2t42t3+2t+1t42t3+2t+1=0therootsarez1=1,5291+0,7429i=α+iβz2=1,52910,7429i(=z1)=αiβz3=0,5291+0,2571i=α+iλz4=0,52910,2571i(=z3)=αiλF(t)=1t2(tz1)(tz1)(tz3)(tz3)=1t2(t22Re(z1)t+z12)(t22Re(z3)t+z32)=1t2(t22αt+α2+β2)(t2+2αt+α2+λ2)=at+bt22αt+α2+β2+ct+dt2+2αt+α2+λ2....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com