Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 65884 by Sayantan chakraborty last updated on 05/Aug/19

Commented by Sayantan chakraborty last updated on 05/Aug/19

answer is unknown to me

answerisunknowntome

Commented by Tony Lin last updated on 06/Aug/19

let∠BAD=∠BCD=θ, ∠BDA=∅  (5/(sin∅))=((6sinθ)/(sinθ))=6  ⇒sin∅=(5/6), cos∅=−((√(11))/6)  2(DM^2 +AM^2 )=DC^2 +AD^2   DC^2 =(6cosθ)^2 =36cos^2 θ  ((AD)/(sin(180°−θ−∅)))=((6sinθ)/(sinθ))=6  AD=6sin(θ+∅)=5cosθ−(√(11))sinθ  AD^2 =25cos^2 θ−10(√(11))sinθcosθ+11sin^2 θ  AC^2 =5^2 +6^2 −2×5×6cos(270°−2θ−∅)  =61+60sin(2θ+∅)  =61+60[2sinθcosθcos∅+(1−2sin^2 θ)sin∅]  =61−20(√(11))sinθcosθ+50−100sin^2 θ  AM^2 =((61)/4)−5(√(11))sinθcosθ+((25)/2)−25sin^2 θ  2(DM^2 +AM^2 )=DC^2 +AD^2   2DM^2 +((61)/2)−10(√(11))sinθcosθ+25−50sin^2 θ  =36cos^2 θ+25cos^2 θ−10(√(11))sinθcosθ+11sin^2 θ  2DM^2 +((61)/2)+25=61(sin^2 θ+cos^2 θ)  DM^2 =((11)/4)⇒DM=((√(11))/2)=((√a)/2)  ⇒a=11

letBAD=BCD=θ,BDA=5sin=6sinθsinθ=6sin=56,cos=1162(DM2+AM2)=DC2+AD2DC2=(6cosθ)2=36cos2θADsin(180°θ)=6sinθsinθ=6AD=6sin(θ+)=5cosθ11sinθAD2=25cos2θ1011sinθcosθ+11sin2θAC2=52+622×5×6cos(270°2θ)=61+60sin(2θ+)=61+60[2sinθcosθcos+(12sin2θ)sin]=612011sinθcosθ+50100sin2θAM2=614511sinθcosθ+25225sin2θ2(DM2+AM2)=DC2+AD22DM2+6121011sinθcosθ+2550sin2θ=36cos2θ+25cos2θ1011sinθcosθ+11sin2θ2DM2+612+25=61(sin2θ+cos2θ)DM2=114DM=112=a2a=11

Commented by Sayantan chakraborty last updated on 17/Aug/19

sir please solve question number 65886

sirpleasesolvequestionnumber65886

Terms of Service

Privacy Policy

Contact: info@tinkutara.com