Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 66109 by Rio Michael last updated on 09/Aug/19

Commented by Rio Michael last updated on 09/Aug/19

The diagram above shows a uniform semi−circular lamina of radius 2a  ,center O. The distance of the centre of mass form P, vertically above O is    A  ((6aπ−8a)/(3π))  B  ((6aπ + 8a)/(3π))  C ((8a−6aπ)/(3π))  D ((6aπ−4a)/(3π))

Thediagramaboveshowsauniformsemicircularlaminaofradius2a,centerO.ThedistanceofthecentreofmassformP,verticallyaboveOisA6aπ8a3πB6aπ+8a3πC8a6aπ3πD6aπ4a3π

Answered by mr W last updated on 09/Aug/19

R=2a  ∫ydA=2∫_0 ^(π/2) (2/3)R sin θ ((R^2 dθ)/2)=((2R^3 )/3)∫_0 ^(π/2) sin θ dθ=((2R^3 )/3)  OC=y_C =((∫ydA)/A)=((2R^3 )/(3×((πR^2 )/2)))=((4R)/(3π))=((8a)/(3π))  ⇒OP=2a−OC=((6aπ−8a)/(3π))  ⇒answer A

R=2aydA=20π223RsinθR2dθ2=2R330π2sinθdθ=2R33OC=yC=ydAA=2R33×πR22=4R3π=8a3πOP=2aOC=6aπ8a3πanswerA

Commented by mr W last updated on 10/Aug/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com