Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66404 by ~ À ® @ 237 ~ last updated on 14/Aug/19

Commented by mathmax by abdo last updated on 14/Aug/19

let I_n =∫_0 ^∞  x^(2n)  e^(−(x^2 /a^2 )) dx    changement (x/a)=t          (a>0) give  I_n =∫_0 ^∞   (at)^(2n)  e^(−t^2 ) (adt) =a^(2n+1) ∫_0 ^∞  t^(2n)  e^(−t^2 ) dt  and  ∫_0 ^∞  t^(2n)  e^(−t^2 ) dt =_(t=(√u))     ∫_0 ^∞   u^n  e^(−u)  (du/(2(√u))) =(1/2) ∫_0 ^∞   u^(n−(1/2))  e^(−u) du  =(1/2)∫_0 ^∞   u^(n−1+(1/2))  e^(−u)  du =(1/2)Γ(n+(1/2))⇒I_n =(a^(2n+1) /2)Γ(n+(1/2))  let W_n =∫_0 ^∞  t^(2n) e^(−t^2 ) dt    by parts  u^′ =t^(2n)  and v=e^(−t^2 )   W_n =[(1/(2n+1))t^(2n+1)  e^(−t^2 ) ]_0 ^∞  −∫_0 ^∞ (t^(2n+1) /(2n+1))(−2t)e^(−t^2 ) dt  =(2/(2n+1))∫_0 ^∞  t^(2(n+1))  e^(−t^2 ) dt =(2/(2n+1)) W_(n+1)  ⇒W_(n+1) =((2n+1)/2)W_n  ⇒  Π_(k=0) ^(n−1)  W_(k+1) =(1/2^n )Π_(k=0) ^(n−1) (2k+1)Π_(k=0) ^(n−1)  W_n  ⇒  W_1 .W_2 .....W_n =(1/2^n )(1.3.5.....(2n−1)W_0 .W_1 ....W_(n−1)  ⇒  W_n =(1/2^n )(((2.3.4.5.6......(2n))/(2.4......(2n))))W_0 =(((2n)!)/(2^(2n) n!))((√π)/2) =((√π)/2^(2n+1) ) (((2n)!)/(n!)) ⇒  I_n =a^(2n+1)  ((√π)/2^(2n+1) ) (((2n)!)/(n!)) =((a/2))^(2n+1)  (((2n)!)/(n!)) (√π)  also we get  Γ(n+(1/2))=2W_n =((√π)/2^(2n) ) (((2n)!)/(n!))

letIn=0x2nex2a2dxchangementxa=t(a>0)giveIn=0(at)2net2(adt)=a2n+10t2net2dtand0t2net2dt=t=u0uneudu2u=120un12eudu=120un1+12eudu=12Γ(n+12)In=a2n+12Γ(n+12)letWn=0t2net2dtbypartsu=t2nandv=et2Wn=[12n+1t2n+1et2]00t2n+12n+1(2t)et2dt=22n+10t2(n+1)et2dt=22n+1Wn+1Wn+1=2n+12Wnk=0n1Wk+1=12nk=0n1(2k+1)k=0n1WnW1.W2.....Wn=12n(1.3.5.....(2n1)W0.W1....Wn1Wn=12n(2.3.4.5.6......(2n)2.4......(2n))W0=(2n)!22nn!π2=π22n+1(2n)!n!In=a2n+1π22n+1(2n)!n!=(a2)2n+1(2n)!n!πalsowegetΓ(n+12)=2Wn=π22n(2n)!n!

Commented by ~ À ® @ 237 ~ last updated on 14/Aug/19

Thank you sir

Thankyousir

Commented by mathmax by abdo last updated on 14/Aug/19

you are welcome.

youarewelcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com