Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66938 by Cmr 237 last updated on 20/Aug/19

Commented by mathmax by abdo last updated on 21/Aug/19

8)by parts  ∫ ln(1+x^2 )dx =xln(1+x^2 )−∫ x((2x)/(1+x^2 ))dx  =xln(1+x^2 )−2 ∫  ((1+x^2 −1)/(1+x^2 ))dx =xln(1+x^2 )−2x +2 arctanx +C  7) by parts ∫ arctanx dx =x arctan(x)−∫ (x/(1+x^2 ))dx  =x arctan(x)−(1/2)ln(1+x^2 ) +C

8)bypartsln(1+x2)dx=xln(1+x2)x2x1+x2dx=xln(1+x2)21+x211+x2dx=xln(1+x2)2x+2arctanx+C7)bypartsarctanxdx=xarctan(x)x1+x2dx=xarctan(x)12ln(1+x2)+C

Commented by mathmax by abdo last updated on 21/Aug/19

6) we do the changement arcsinx =t ⇒x=sint ⇒  ∫ arcsinx dx =∫ t cost dt =_(by parts)   tsint −∫ sint dt  =tsint +cost  +C =x arcsinx +(√(1−x^2 )) +C .

6)wedothechangementarcsinx=tx=sintarcsinxdx=tcostdt=bypartstsintsintdt=tsint+cost+C=xarcsinx+1x2+C.

Commented by mathmax by abdo last updated on 21/Aug/19

5) we do the changement tan((x/2))=t ⇒  ∫ (dx/(sinx)) =∫   (1/((2t)/(1+t^2 )))((2dt)/(1+t^2 ))= ∫ (dt/t) =ln∣t∣ +C =ln∣tan((x/2))∣ +C

5)wedothechangementtan(x2)=tdxsinx=12t1+t22dt1+t2=dtt=lnt+C=lntan(x2)+C

Commented by mathmax by abdo last updated on 21/Aug/19

4) let I =∫   (dx/(x(√(x^2  +x+1))))  we have x^(2 ) +x+1 =(x+(1/2))^2  +(3/4)  so we do the changement x+(1/2) =((√3)/2) sh(t) ⇒  I =∫   (1/((((√3)/2)sh(t)−(1/2))((√3)/2)ch(t)))((√3)/2)ch(t)dt =∫ ((2dt)/((√3)sh(t)−1))  =∫((2dt)/((√3)(((e^t −e^(−t) )/2))−1))  =∫ ((4dt)/((√3)e^t −(√3)e^(−t) −2)) =_(e^t =u)   ∫   (4/((√3)u−(√3)u^(−1) −2))(du/u)  =∫  ((4du)/((√3)u^2 −(√3)−2u)) let decompose F(u)=(4/((√3)u^2 −2u−(√3)))  (√3)u^2 −2u−(√3)=0→ Δ^′ =1+3 =4 ⇒u_1 =((1+2)/(√3)) =(√3)  and u_2 =((1−2)/(√3)) =−(1/(√3)) ⇒F(u) =(4/((√3)(u−(√3))(u+(1/(√3))))) ⇒  I =(4/((√3)((√3)+(1/(√3)))))∫   {(1/(u−(√3)))−(1/(u+(1/(√3))))}du =ln∣((u−(√3))/(u+(1/(√3))))∣ +C  =ln∣((e^t −(√3))/(e^t  +(1/(√3))))∣ +C  but sh(t)=((2x+1)/(√3))  ⇒t =argsh(((2x+1)/(√3)))  =ln(((2x+1)/(√3))+(√(1+(((2x+1)/((√3) )))^2 ))) ⇒e^t  =((2x+1)/(√3))+(√(1+(((2x+1)/(√3)))^2 ))  ⇒ I =ln∣((2x+1)/(√3))+(√(1+(((2x+1)/(√3)))^2 ))−(√3)∣−ln∣((2x+1)/(√3))+(√(1+(((2x+1)/(√3)))^2 ))+(1/(√3))∣+C

4)letI=dxxx2+x+1wehavex2+x+1=(x+12)2+34sowedothechangementx+12=32sh(t)I=1(32sh(t)12)32ch(t)32ch(t)dt=2dt3sh(t)1=2dt3(etet2)1=4dt3et3et2=et=u43u3u12duu=4du3u232uletdecomposeF(u)=43u22u33u22u3=0Δ=1+3=4u1=1+23=3andu2=123=13F(u)=43(u3)(u+13)I=43(3+13){1u31u+13}du=lnu3u+13+C=lnet3et+13+Cbutsh(t)=2x+13t=argsh(2x+13)=ln(2x+13+1+(2x+13)2)et=2x+13+1+(2x+13)2I=ln2x+13+1+(2x+13)23ln2x+13+1+(2x+13)2+13+C

Commented by Cmr 237 last updated on 21/Aug/19

thank sir (merci beaucoup monsieur)

thanksir(mercibeaucoupmonsieur)

Commented by mathmax by abdo last updated on 21/Aug/19

you are welcome sir.

youarewelcomesir.

Commented by mathmax by abdo last updated on 22/Aug/19

3)∫ cos^4 xdx =∫  (((1+cos(2x))/2))^2 dx =(1/4)∫(1+2cos(2x)+cos^2 (2x))dx  =(1/4)x +(1/2)∫cos(2x)dx +(1/8)∫(1+cos(4x))dx  =(x/4) +(1/4)sin(2x) +(x/8) +(1/(32))sin(4x) +C

3)cos4xdx=(1+cos(2x)2)2dx=14(1+2cos(2x)+cos2(2x))dx=14x+12cos(2x)dx+18(1+cos(4x))dx=x4+14sin(2x)+x8+132sin(4x)+C

Answered by Kunal12588 last updated on 21/Aug/19

1) I=∫ tanh x dx  I=∫ ((e^x −e^(−x) )/(e^x +e^(−x) )) dx  let e^x +e^(−x) =t  ⇒(e^x −e^(−x) )dx=dt  ⇒I=∫(dt/t)  ⇒I = ln t + C  ⇒I = ln ∣e^x +e^(−x) ∣ + c  ⇒I = ln ∣cosh x∣ + C

1)I=tanhxdxI=exexex+exdxletex+ex=t(exex)dx=dtI=dttI=lnt+CI=lnex+ex+cI=lncoshx+C

Answered by Kunal12588 last updated on 21/Aug/19

2) I=∫(x/(1+x^4 ))dx   let x^2 =t  ⇒x dx =(dt/2)  ⇒I=(1/2)∫(dt/(1+t^2 ))  ⇒I=(1/2)tan^(−1)  t +C  ⇒I=(1/2)tan^(−1)  x^2  +C

2)I=x1+x4dxletx2=txdx=dt2I=12dt1+t2I=12tan1t+CI=12tan1x2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com