All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 67070 by mRDv143 last updated on 22/Aug/19
Commented by Prithwish sen last updated on 23/Aug/19
∫x2−1(x+1)2x3+x2+xdx=∫x2−1(x+1)2.xx+1x+1dx=∫(1−1x2)dx(x+1x+2)x+1x+1puttingx+1x=u=∫du(u+2)u+1puttingu+1=t2=2∫dtt2+1=2tan−1t+C=2tan−1x2+x+1x+Cpleasecheck.
Commented by mathmax by abdo last updated on 22/Aug/19
iseeasmallerrorifweputx+1x=u⇒∫x2−1(x+1)2x3+x2+xdx=∫du(u+2)u+1=u+1=t2∫2tdt(t2+1)t=2∫dt1+t2=2arctan(t)+c=2arctan(u+1)+c=2arctan(x+1x+1)+c
Thankyouverymuchsir.Itwasatypo.Icorrectit.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com