Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 67516 by LPM last updated on 28/Aug/19

Commented by Prithwish sen last updated on 28/Aug/19

cos^2 x +(2cos^2 x−1)^2 = 1−cos^2 3x  Simplyfying we get,  2cos^2 x(4cos^4 x−10cos^2 x+3)=0  ⇒cos^2 x = 0   and cos^2 x=((10±(√(52)))/8)  ∴ x=(2n−1)(π/2)  and x = Cos^(−1) [((√(5±(√(13))))/2)]  please check.

cos2x+(2cos2x1)2=1cos23xSimplyfyingweget,2cos2x(4cos4x10cos2x+3)=0cos2x=0andcos2x=10±528x=(2n1)π2andx=Cos1[5±132]pleasecheck.

Commented by mathmax by abdo last updated on 19/Sep/19

(e) ⇒((1+cos(2x))/2) +((1+cos(4x))/2) =((1−cos(6x))/2) ⇒  2 +cos(2x)+cos(4x)=1−cos(6x) ⇒  1+cos(2x)+cos(4x) +cos(6x)=0 ⇒Re(Σ_(k=0) ^3  e^(i2kx) )=0 but  Σ_(k=0) ^3  e^(i2kx)  =Σ_(k=0) ^3 (e^(i2x) )^k  =((1−(e^(2ix) )^4 )/(1−e^(2ix) )) =((1−e^(8ix) )/(1−e^(2ix) ))  =((1−cos(8x)−isin(8x))/(1−cos(2x)−isin(2x))) =((2sin^2 (4x)−2i sin(4x)cos(4x))/(2sin^2 x−2isinx cosx))  =((−isin(4x){cos(4x)+isin(4x)})/(−isinx{cosx+isinx}))  =((sin(4x))/(sinx)) e^(i4x−ix)  =((sin(4x))/(sinx)) {cos(3x)+isin(3x)} ⇒  Re(Σ_(k=0) ^3  e^(i2kx) ) =((sin(4x)cos(3x))/(sinx))  (e) ⇒sin(4x)cos(3x) =0   and x≠kπ ⇒sin(4x)=0 or cos(3x)=0  ⇒4x =kπ  or 3x =(π/2) +kπ ⇒ x =((kπ)/4) or x =(π/6) +((kπ)/3)  with k∈ Z .

(e)1+cos(2x)2+1+cos(4x)2=1cos(6x)22+cos(2x)+cos(4x)=1cos(6x)1+cos(2x)+cos(4x)+cos(6x)=0Re(k=03ei2kx)=0butk=03ei2kx=k=03(ei2x)k=1(e2ix)41e2ix=1e8ix1e2ix=1cos(8x)isin(8x)1cos(2x)isin(2x)=2sin2(4x)2isin(4x)cos(4x)2sin2x2isinxcosx=isin(4x){cos(4x)+isin(4x)}isinx{cosx+isinx}=sin(4x)sinxei4xix=sin(4x)sinx{cos(3x)+isin(3x)}Re(k=03ei2kx)=sin(4x)cos(3x)sinx(e)sin(4x)cos(3x)=0andxkπsin(4x)=0orcos(3x)=04x=kπor3x=π2+kπx=kπ4orx=π6+kπ3withkZ.

Answered by MJS last updated on 18/Sep/19

cos^2  2x =4cos^4  x −4cos^2  x +1  sin^2  3x =−16cos^6  x +24cos^4  x −9cos^2  x +1  cos^2  x =t  2t(2t−1)(4t−3)=0  t=0 ∨ t=(1/2) ∨ t=(3/4)  (1) cos^2  x =0 ⇒ x=(π/2)(2n−1)  (2) cos^2  x =(1/2) ⇒ x=(π/4)(2n−1)  (3) cos^2  x =(3/4) ⇒ x=(π/6)(2n−1); n≠3m−1 ⇔       ⇔ n∉{..., −7, −4, −1, 2, 5, 8,...}       but these are covered with (1)  ⇒  x=(π/4)(2n−1) ∨ x=(π/6)(2n−1)  n∈Z

cos22x=4cos4x4cos2x+1sin23x=16cos6x+24cos4x9cos2x+1cos2x=t2t(2t1)(4t3)=0t=0t=12t=34(1)cos2x=0x=π2(2n1)(2)cos2x=12x=π4(2n1)(3)cos2x=34x=π6(2n1);n3m1n{...,7,4,1,2,5,8,...}butthesearecoveredwith(1)x=π4(2n1)x=π6(2n1)nZ

Commented by Prithwish sen last updated on 28/Aug/19

thank you sir.

thankyousir.

Answered by mr W last updated on 28/Aug/19

let t=cos^2  x≥0  sin^2  3x=(1−cos^2  x)(4 cos^2  x−1)^2 =(1−t)(4t−1)^2   cos^2  2x=(2 cos^2  x−1)^2 =(2t−1)^2   t+(2t−1)^2 =(1−t)(4t−1)^2   t(8t^2 −10t+3)=0  ⇒t=0, (1/2), (3/4)  with cos^2  x=0:  ⇒x=nπ±(π/2)  with cos^2  x=(1/2):  cos x=±((√2)/2)  ⇒x=nπ±(π/4)  with cos^2  x=(3/4):  cos x=±((√3)/2)  ⇒x=nπ±(π/6)

lett=cos2x0sin23x=(1cos2x)(4cos2x1)2=(1t)(4t1)2cos22x=(2cos2x1)2=(2t1)2t+(2t1)2=(1t)(4t1)2t(8t210t+3)=0t=0,12,34withcos2x=0:x=nπ±π2withcos2x=12:cosx=±22x=nπ±π4withcos2x=34:cosx=±32x=nπ±π6

Commented by Prithwish sen last updated on 28/Aug/19

thank you sir.

thankyousir.

Commented by LPM last updated on 29/Aug/19

goood

goood

Terms of Service

Privacy Policy

Contact: info@tinkutara.com