Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 67535 by mr W last updated on 28/Aug/19

Commented by mr W last updated on 28/Aug/19

find the area of the square A=?

findtheareaofthesquareA=?

Commented by Prithwish sen last updated on 28/Aug/19

Area = ((a^2 +b^2 +c^2 )/2)

Area=a2+b2+c22

Commented by petrochengula last updated on 28/Aug/19

Area=((a^2 +b^2 +c^2 +2ac)/2)

Area=a2+b2+c2+2ac2

Commented by mr W last updated on 28/Aug/19

thanks sirs!  A=((a^2 +b^2 +c^2 +2ac)/2) is the right answer.

thankssirs!A=a2+b2+c2+2ac2istherightanswer.

Commented by Prithwish sen last updated on 28/Aug/19

Sorry it will be (a+c)^2  . Thank you sir

Sorryitwillbe(a+c)2.Thankyousir

Answered by mr W last updated on 28/Aug/19

Commented by mr W last updated on 28/Aug/19

diagonal of square=d  d^2 =b^2 +(a+c)^2   area of square=A  A=((d/(√2)))^2 =(d^2 /2)=((b^2 +(a+c)^2 )/2)

diagonalofsquare=dd2=b2+(a+c)2areaofsquare=AA=(d2)2=d22=b2+(a+c)22

Commented by Prithwish sen last updated on 28/Aug/19

Thanks a lot.

Thanksalot.

Commented by TawaTawa last updated on 28/Aug/19

Wow, God bless you sir.

Wow,Godblessyousir.

Commented by Rasheed.Sindhi last updated on 28/Aug/19

The red line segments (having lengths  a,b & c) divide the square into two  parts.Find out the area of any part.

Theredlinesegments(havinglengthsa,b&c)dividethesquareintotwoparts.Findouttheareaofanypart.

Commented by mr W last updated on 28/Aug/19

segment b is divided by the diagonal  in ratio a:c.  assume c≥a.  ΔA=(c/2)×(c/(a+c))×b−(a/2)×(a/(a+c))×b  =((b(c^2 −a^2 ))/(2(a+c)))=((b(c−a))/2)  A_1 =(A/2)+ΔA=((b^2 +(a+c)^2 +2b(c−a))/4)  A_2 =(A/2)−ΔA=((b^2 +(a+c)^2 −2b(c−a))/4)

segmentbisdividedbythediagonalinratioa:c.assumeca.ΔA=c2×ca+c×ba2×aa+c×b=b(c2a2)2(a+c)=b(ca)2A1=A2+ΔA=b2+(a+c)2+2b(ca)4A2=A2ΔA=b2+(a+c)22b(ca)4

Commented by Rasheed.Sindhi last updated on 29/Aug/19

سائين توھان جي مھرباني!Thanks s¡r

Commented by mr W last updated on 30/Aug/19

Tawhaan jee mehrbaani!

Tawhaanjeemehrbaani!

Commented by Rasheed.Sindhi last updated on 30/Aug/19

You have written exactly correct  in roman alphabet!

Youhavewrittenexactlycorrectinromanalphabet!

Commented by Rasheed.Sindhi last updated on 30/Aug/19

Sir, ich fühle mich mit Ihnen freundlicher als jeder andere Forum-Freund von mir.

Commented by mr W last updated on 30/Aug/19

thank you for saying that, sir!

thankyouforsayingthat,sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com