Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 67615 by TawaTawa last updated on 29/Aug/19

Commented by TawaTawa last updated on 29/Aug/19

i did.      A of Big semi circle = ((πr^2 )/2)  =  ((π.2^2 )/2)  =  2π  A of second big semicircle  =  ((πr^2 )/2)  =  (1/2)π  But i don′t know what to do again

idid.AofBigsemicircle=πr22=π.222=2πAofsecondbigsemicircle=πr22=12πButidontknowwhattodoagain

Answered by mr W last updated on 29/Aug/19

Commented by mr W last updated on 29/Aug/19

radius of big semi circle=R=a  radius of small circles=r=(a/2)  α=(π/3)  β=((2π)/3)  AD=2R=2a  BC=r=(a/2)  A_(ABCD) =(((a/2)+2a)/2)×(a/2)×((√3)/2)=((5(√3)a^2 )/(16))  A_(AB^(⌢) ) =A_(CD^(⌢) ) =(r^2 /2)(β−sin β)=(a^2 /8)(((2π)/3)−((√3)/2))  A_(BC^(⌢) ) =(r^2 /2)(α−sin α)=(a^2 /8)((π/3)−((√3)/2))  A_(shade) =((πR^2 )/2)−A_(ABCD) −2×A_(AB^(⌢) ) −A_(BC^(⌢) )   =((πa^2 )/2)−((5(√3)a^2 )/(16))−2×(a^2 /8)(((2π)/3)−((√3)/2))−(a^2 /8)((π/3)−((√3)/2))  =(a^2 /8)(((7π)/3)−(√3))  =((a^2 (7π−3(√3)))/(24))

radiusofbigsemicircle=R=aradiusofsmallcircles=r=a2α=π3β=2π3AD=2R=2aBC=r=a2AABCD=a2+2a2×a2×32=53a216AAB=ACD=r22(βsinβ)=a28(2π332)ABC=r22(αsinα)=a28(π332)Ashade=πR22AABCD2×AABABC=πa2253a2162×a28(2π332)a28(π332)=a28(7π33)=a2(7π33)24

Commented by TawaTawa last updated on 29/Aug/19

Wow, God bless you sir.

Wow,Godblessyousir.

Answered by mr W last updated on 29/Aug/19

Commented by mr W last updated on 29/Aug/19

A_1 =∫_0 ^(π/3) (1/2)(a^2 −a^2 cos^2  θ)dθ  =(a^2 /2)∫_0 ^(π/3) sin^2  θdθ  =(a^2 /4)∫_0 ^(π/3) (1−cos 2θ)dθ  =(a^2 /4)[θ−((sin 2θ)/2)]_0 ^(π/3)   =(a^2 /4)((π/3)−((√3)/4))  A_2 =(1/2)×(π/6)×(a^2 −(a^2 /4))=((a^2 π)/(16))    A_(shaded) =2(A_1 +A_2 )  =(a^2 /2)((π/3)−((√3)/4))+((πa^2 )/8)  =((a^2 (7π−3(√3)))/(24))

A1=0π312(a2a2cos2θ)dθ=a220π3sin2θdθ=a240π3(1cos2θ)dθ=a24[θsin2θ2]0π3=a24(π334)A2=12×π6×(a2a24)=a2π16Ashaded=2(A1+A2)=a22(π334)+πa28=a2(7π33)24

Commented by TawaTawa last updated on 29/Aug/19

I appreciate your time sir. God bless you

Iappreciateyourtimesir.Godblessyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com