All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 6762 by 314159 last updated on 24/Jul/16
Commented by Yozzii last updated on 24/Jul/16
x12+x22+2x1x2cosθ=1,y12+y22+2y1y2cosθ=1,x1y1+x2y2+(x1y2+x2y1)cosθ=0.Provethatx12+y12=cosec2θ.
x12+x22+2x1x2cosθ=1......................(1)y12+y22+2y1y2cosθ=1.......................(2)x1x2+y1y2+(x1y2+y1x2)cosθ=0......(3)orx1x2+y1y2=−(x1y2+y1x2)cosθfor(3).Westartbyfindingx2intermsofx1inequation(1).(x2+x1cosθ)2+x12=x22+2x1x2cosθ+x12+x12cos2θ(x2+x1cosθ)2+x12=1+x12cos2θ(x2+x1cosθ)2=1−x12sin2θx2=−x1cosθ±1−x12sin2θSimilarly,y2intermsofy1forequation(2)isgivenbyy2=−y1cosθ±1−y12sin2θ.−−−−−−−−−−−−−−−−−−−−−−−−−−−Workingatthesecondformofequation(3)termbytermwithx2andy2substitutedleadstothefollowingresults.(y1x2+x1y2)cosθ=−2x1y1cos2θ±(y11−x12sin2θ+x11−y12sin2θ)cosθ−(y1x2+x1y2)cosθ=2x1y1cos2θ∓k{Letk=(y11−x12sin2θ+x11−y12sin2θ)cosθ}andx2y2=x1y1cos2θ∓{x11−y12sin2θ+y11−x12sin2θ}cosθ+(1−x12sin2θ)(1−y12sin2θ)x2y2=x1y1+x1y1cos2θ∓k+(1−x12sin2θ)(1−y12sin2θ)∴secondformof(3)becomes,aftercancellationof∓kfrombothsides,x1y1+x1y1cos2θ+(1−x12sin2θ)(1−y12sin2θ)=2x1y1cos2θx1y1(1+cos2θ−2cos2θ)+(1−x12sin2θ)(1−y12sin2θ)=0x1y1(1−cos2θ)+(1−x12sin2θ)(1−y12sin2θ)=0x1y1sin2θ=−(1−x12sin2θ)(1−y12sin2θ)⇒(1−x12sin2θ)(1−y12sin2θ)=x12y12sin4θ1−x12sin2θ−y12sin2θ+x12y12sin4θ=x12y12sin4θ1−(x12+y12)sin2θ=0sin2θ=1x12+y12⇒x12+y12=cosec2θThisresultassumesthatinx2andy2thatboth±signstakethesamesigns.−−−−−−−−−−−−−−−−−−−−−−−−−−−−Supposethat±takesdifferentsignsbetweenx2andy2;i.ex2=−x1cosθ+1−x12sin2θy2=−y1cosθ−1−y12sin2θ.Youcanshowstillthatcosec2θ=x12+y12.////
Answered by Yozzii last updated on 24/Jul/16
CheckcommentsforasolutionIshared.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com