Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 67716 by TawaTawa last updated on 30/Aug/19

Answered by mind is power last updated on 30/Aug/19

let c_1 =demi circle of r=2  c2=circle r=1  c_1 ..x^2 +y^2 =4  c_2 =x^2 +(y−h)^2 =1  withe (0,h) center of c_2   c_1 ∩c_2 ⇒y^2 −(y−h)^2 =3  ⇒2yh−h^2 =3⇒y=((3+h^2 )/(2h))=y_0   x^2 =(4−y^2 )=((16h^2 −(3+h^2 )^2 )/(4h^2 ))=((−h^4 +10h^2 −9)/(4h^2 ))=((−(h^2 −9)(h^2 −1))/(4h^2 ))  ⇒h^2 ∈[1,9]  either c_2 ∩c_1 ={}  x=+_− (√((−(h^2 −9)(h^2 −1))/(4h^2 )))=+_− x_0   assum h^2 ∈[1.9]  D(+x_0 .y_0 ).C=(−x_0 .y_0 )  DA+AB=∫_(−x_(0 ) ) ^(+x_0 ) (√(1+((dy/dx))^2 ))dx...c_1   (dy/dx)=d((√(4−x^2 )))/dx=((−x)/(√(4−x^2 )))⇒((dy/dx))^2 =(x^2 /(4−x^2 ))  DA+AB=∫_(−x_0 ) ^(+x_0 ) (√(4/(4−x^2 )))dx  x=2sin(δ)⇒dx=2cos(δ)dδ  DA+AB=∫_(arcsin(−((x0)/2))) ^(arcsin(((x0)/2))) (√(4/(4−4sin^2 (δ)))).2cos(δ)dδ)  =∫2.((2cos(δ))/(∣2cos(δ)∣))dδ=4∫_0 ^(arcsin((x_0 /2))) dδ=4arcsin((x_0 /2))  same idea  too find DC+CB...

letc1=demicircleofr=2c2=circler=1c1..x2+y2=4c2=x2+(yh)2=1withe(0,h)centerofc2c1c2y2(yh)2=32yhh2=3y=3+h22h=y0x2=(4y2)=16h2(3+h2)24h2=h4+10h294h2=(h29)(h21)4h2h2[1,9]eitherc2c1={}x=+(h29)(h21)4h2=+x0assumh2[1.9]D(+x0.y0).C=(x0.y0)DA+AB=x0+x01+(dydx)2dx...c1dydx=d(4x2)/dx=x4x2(dydx)2=x24x2DA+AB=x0+x044x2dxx=2sin(δ)dx=2cos(δ)dδDA+AB=arcsin(x02)arcsin(x02)444sin2(δ).2cos(δ)dδ)=2.2cos(δ)2cos(δ)dδ=40arcsin(x02)dδ=4arcsin(x02)sameideatoofindDC+CB...

Commented by TawaTawa last updated on 30/Aug/19

God bless you sir.

Godblessyousir.

Answered by mr W last updated on 30/Aug/19

Commented by mr W last updated on 30/Aug/19

BD=2×1×sin (α/2)=2×2×sin (β/2)  ⇒sin (α/2)=2 sin (β/2)    ...(i)  EF=1+2−AC=1+2−(1/2)=(5/2)  EF=1×cos (α/2)+2×cos (β/2)=(5/2)  ⇒cos (α/2)=(5/2)−2 cos (β/2)    ...(ii)  (i)^2 +(ii)^2 :  sin^2  (α/2)+cos^2  (α/2)=4 sin^2  (β/2)+((25)/4)−10 cos (β/2)+4 cos^2  (β/2)  1=4+((25)/4)−10 cos (β/2)  ⇒cos (β/2)=((37)/(40))  ⇒sin (β/2)=((√(40^2 −37^2 ))/(40))=((√(231))/(40))  ⇒sin β=2×((37)/(40))×((√(231))/(40))=((37(√(231)))/(800))  ⇒β=sin^(−1) ((37(√(231)))/(800))  sin (α/2)=2×((√(231))/(40))=((√(231))/(20))  cos (α/2)=((√(20^2 −231))/(20))=((13)/(20))  ⇒sin α=2×((√(231))/(20))×((13)/(20))=((13(√(231)))/(200))  ⇒α=sin^(−1) ((13(√(231)))/(200))    perimeter of ABCD=p  p=1×α+2×β  =sin^(−1) ((13(√(231)))/(200))+2 sin^(−1) ((37(√(231)))/(800))  ≈2.974    area of ABCD=A  A=(1^2 /2)(α−sin α)+(2^2 /2)(β−sin β)  =(1/2)(sin^(−1) ((13(√(231)))/(200))−((13(√(231)))/(200)))+2(sin^(−1) ((37(√(231)))/(800))−((37(√(231)))/(800)))  ≈0.367

BD=2×1×sinα2=2×2×sinβ2sinα2=2sinβ2...(i)EF=1+2AC=1+212=52EF=1×cosα2+2×cosβ2=52cosα2=522cosβ2...(ii)(i)2+(ii)2:sin2α2+cos2α2=4sin2β2+25410cosβ2+4cos2β21=4+25410cosβ2cosβ2=3740sinβ2=40237240=23140sinβ=2×3740×23140=37231800β=sin137231800sinα2=2×23140=23120cosα2=20223120=1320sinα=2×23120×1320=13231200α=sin113231200perimeterofABCD=pp=1×α+2×β=sin113231200+2sin1372318002.974areaofABCD=AA=122(αsinα)+222(βsinβ)=12(sin11323120013231200)+2(sin13723180037231800)0.367

Commented by TawaTawa last updated on 30/Aug/19

Wow, God bless you sir.

Wow,Godblessyousir.

Commented by TawaTawa last updated on 30/Aug/19

I appreciate your time sir.

Iappreciateyourtimesir.

Commented by TawaTawa last updated on 31/Aug/19

Sir, i checked the workings, i understand the rest but i don′t understand  how you got equation (i) and (ii). But i get the rest.  Can you let   me understand (i) and (ii).  Sorry for disturbing too much. And  Thanks for helping always. God will reward you sir.

Sir,icheckedtheworkings,iunderstandtherestbutidontunderstandhowyougotequation(i)and(ii).Butigettherest.Canyouletmeunderstand(i)and(ii).Sorryfordisturbingtoomuch.AndThanksforhelpingalways.Godwillrewardyousir.

Commented by mr W last updated on 31/Aug/19

Commented by mr W last updated on 31/Aug/19

BD=2×GD  GD=ED×sin (α/2)=1×sin (α/2)  GD=FD×sin (β/2)=2×sin (β/2)  ⇒sin (α/2)=2 sin (β/2)  EF=r_1 +r_2 −AC=1+2−(1/2)=(5/2)  EF=EG+GF=ED×cos (α/2)+FD×cos (β/2)  =1×cos (α/2)+2×cos (β/2)=(5/2)  ⇒cos (α/2)=(5/2)−2 cos (β/2)

BD=2×GDGD=ED×sinα2=1×sinα2GD=FD×sinβ2=2×sinβ2sinα2=2sinβ2EF=r1+r2AC=1+212=52EF=EG+GF=ED×cosα2+FD×cosβ2=1×cosα2+2×cosβ2=52cosα2=522cosβ2

Commented by TawaTawa last updated on 31/Aug/19

I appreciate sir. God bless you more

Iappreciatesir.Godblessyoumore

Terms of Service

Privacy Policy

Contact: info@tinkutara.com