Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 67903 by rajesh4661kumar@gmail.com last updated on 02/Sep/19

Answered by $@ty@m123 last updated on 02/Sep/19

Let (√x)=y  3y^2 +(2/y)=1  3y^3 +2=y  3y^3 −y+2=0  3y^3 +3y^2 −3y^2 −3y+2y+2=0  3y^2 (y+1)−3y(y+1)+2(y+1)=0  (y+1)(3y^2 −3y+2)=0  y=−1    ∣   3y^2 −3y+2=0                    ∣  3(y^2 −y)+2=0                    ∣  y^2 −y=((−2)/3)

Letx=y3y2+2y=13y3+2=y3y3y+2=03y3+3y23y23y+2y+2=03y2(y+1)3y(y+1)+2(y+1)=0(y+1)(3y23y+2)=0y=13y23y+2=03(y2y)+2=0y2y=23

Commented by MJS last updated on 02/Sep/19

y=−1 ⇒ (√x)=−1 and this has no solution  you get the right result but the path is wrong

y=1x=1andthishasnosolutionyougettherightresultbutthepathiswrong

Commented by Prithwish sen last updated on 02/Sep/19

I think (√x) = −1 ⇏ x =i as (√x)=−1⇒x=1only  That is why the matter of complex number  is irrelvant . Mjs sir waiting for your opinion.

Ithinkx=1x=iasx=1x=1onlyThatiswhythematterofcomplexnumberisirrelvant.Mjssirwaitingforyouropinion.

Commented by MJS last updated on 02/Sep/19

it′s not a matter of being broad or narrow  minded.  x^2 =−1  x^2 +1=0  (x−i)(x+i)=0  ⇒ x=±i       (−i)^2 =−1       (+i)^2 =−1  x^3 =−1  x^3 +1=0  (x+1)(x^2 −x+1)=0  ⇒ x=−1∨x=(1/2)±((√3)/2)i       (−1)^3 =−1       ((1/2)−((√3)/2)i)^3 =−1       ((1/2)+((√3)/2)i)^3 =−1  ...    x^n =−1  the solutions form a cyclic n−gon    x^(1/2) =−1  (1) what′s a cyclic (1/2)−gon?  (2) x=re^(iθ) ; −1=e^(iπ)          (√r)e^(i(θ/2)) =1e^(iπ)          ⇒^(?)  r=1∧θ=2π ⇔ x=e^(2πi) =1  but: (√1)=1  the problem is, if we square an equation we  might get false solutions ⇒ we have to try  these solutions in the original equation    another problem: if (√1)=±1 we can forget  the uniqueness of terms like  (√((7/(16))−((√3)/4)))  this would have 4 different values    usually all n−roots are defined as the “natural”  roots:  (√4)=2  (√(−4))=2i  (8)^(1/3) =2  ((−8))^(1/3) =−2 (this violates other laws, electronic       calculators give ((−8))^(1/3) =1+(√3)i because the       “natural” 3^(rd)  root of 8e^(iπ)  is (8)^(1/3) e^(i(π/3)) )  ...  this also makes it complicated to calculate  (−1)^(2/5) : (((−1)^2 ))^(1/5) ≠(((−1))^(1/5) )^2  in machine logic

itsnotamatterofbeingbroadornarrowminded.x2=1x2+1=0(xi)(x+i)=0x=±i(i)2=1(+i)2=1x3=1x3+1=0(x+1)(x2x+1)=0x=1x=12±32i(1)3=1(1232i)3=1(12+32i)3=1...xn=1thesolutionsformacyclicngonx12=1(1)whatsacyclic12gon?(2)x=reiθ;1=eiπreiθ2=1eiπ?r=1θ=2πx=e2πi=1but:1=1theproblemis,ifwesquareanequationwemightgetfalsesolutionswehavetotrythesesolutionsintheoriginalequationanotherproblem:if1=±1wecanforgettheuniquenessoftermslike71634thiswouldhave4differentvaluesusuallyallnrootsaredefinedasthenaturalroots:4=24=2i83=283=2(thisviolatesotherlaws,electroniccalculatorsgive83=1+3ibecausethenatural3rdrootof8eiπis83eiπ3)...thisalsomakesitcomplicatedtocalculate(1)25:(1)25(15)2inmachinelogic

Commented by Prithwish sen last updated on 02/Sep/19

Thanks sir. I appreciate for your effort.

Thankssir.Iappreciateforyoureffort.

Answered by MJS last updated on 02/Sep/19

3x+(2/(√x))=1  3x(√x)−(√x)+2=0  x=t^2   3t^2 ∣t∣−∣t∣+2=0  case 1: t<0  −3t^3 +t+2=0  −(t−1)(3t^2 +3t+2)=0  ⇒ t=1 but t<0 ⇒ no solution in R  case 2: t>0  3t^3 −t+2=0  (t+1)(3t^2 −3t+2)=0  ⇒ t=−1 but t>0 ⇒ no solution in R    but in both cases we get 2 complex solutions  and with x=t^2  we have  x=−(1/6)±((√(15))/6)i  ⇒ x−(√x)=−(2/3)

3x+2x=13xxx+2=0x=t23t2tt+2=0case1:t<03t3+t+2=0(t1)(3t2+3t+2)=0t=1butt<0nosolutioninRcase2:t>03t3t+2=0(t+1)(3t23t+2)=0t=1butt>0nosolutioninRbutinbothcasesweget2complexsolutionsandwithx=t2wehavex=16±156ixx=23

Commented by MJS last updated on 02/Sep/19

x=i is wrong anyway  (√i)=((√2)/2)+((√2)/2)i

x=iiswronganywayi=22+22i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com