All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 67907 by A8;15: last updated on 02/Sep/19
Commented by mathmax by abdo last updated on 02/Sep/19
letI=∫dxxx2+x−6x2+x−6=0→Δ=1−4(−6)=25⇒x1=−1+52=2andx2=−1−52=−3⇒I=∫dxx(x−2)(x+3)wedothechangementx−2=t⇒x−2=t2⇒x=t2+2⇒I=∫2tdt(t2+2)tt2+2+3=∫2dt(t2+2)t2+5afterwedothechangementt=5sh(u)⇒I=∫25ch(u)(25sh2u+2)5ch(u)du=∫2du25ch(2u)−12+2=∫4du25ch(2u)−25+4=∫4du25ch(2u)−21=∫4du25e2u+e−2u2−21=∫4du25e2u+25e−2u−42=e2u=t∫425t+25t−1−42×dt2t=∫2dt25t2+25=225∫dt1+t2=225arctan(t)+c=225arctan(e2u)+cbutu=argsh(t5)=ln(t5+1+t25)⇒e2u=(t5+1+t25)2⇒I=225arctan{(t+5+t25)2}+C
Answered by MJS last updated on 02/Sep/19
∫dxxx2+x−6=[t=12−x5x→dx=−5x212dt]=−66∫dt1−t2=−66arcsint==66arcsinx−125x
Commented by MJS last updated on 02/Sep/19
∫dxx(x+a2)(x−b2)=[t=(a2−b2)x−2a2b2(a2+b2)x→dx=(a2+b2)x22a2b2dt]=−1a2b2∫dt1−t2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com