Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 67996 by TawaTawa last updated on 03/Sep/19

Commented by mathmax by abdo last updated on 03/Sep/19

we have  1≤k≤n ⇒n^2 +1≤n^2  +k≤n^2  +n ⇒  (√(n^2  +1))≤(√(n^2  +k))≤(√(n^2  +n)) ⇒(1/(√(n^2 +n))) ≤(1/(√(n^2  +k))) ≤(1/(√(n^2  +1))) ⇒  (n/(√(n^(2 ) +n))) ≤ Σ_(k=1) ^n  (1/(√(n^2  +k))) ≤(n/(√(n^2 +1)))   we have  lim_(n→+∞)   (n/(√(n^2  +n))) =lim_(n→+∞)   (n/(n(√(1+(1/n))))) =lim_(n→+∞)  (1/(√(1+(1/n)))) =1  lim_(n→+∞)   (n/(√(n^2  +1))) =lim_(n→+∞)    (n/(n(√(1+(1/n^2 ))))) =lim_(n→+∞)  (1/(√(1+(1/n^2 ))))=1  ⇒lim_(n→+∞) a_n =1 .

wehave1knn2+1n2+kn2+nn2+1n2+kn2+n1n2+n1n2+k1n2+1nn2+nk=1n1n2+knn2+1wehavelimn+nn2+n=limn+nn1+1n=limn+11+1n=1limn+nn2+1=limn+nn1+1n2=limn+11+1n2=1limn+an=1.

Commented by mathmax by abdo last updated on 03/Sep/19

b_n =Σ_(k=1) ^n  (1/(√(n+k)))   we have 1≤k≤n ⇒n+1 ≤n+k≤2n ⇒  (√(n+1))≤(√(n+k))≤(√(2n)) ⇒(1/(√(2n))) ≤(1/(√(n+k))) ≤(1/(√(n+1))) ⇒  (1/(√(n+k))) ≥(1/(√(2n)))  but  lim_(n→+∞)   (1/(√(2n))) =+∞ ⇒lim_(n→+∞)    b_n =+∞  c_n =(1/n)Σ_(k=n) ^(2n)  (1/k)  changement of indice k−n =i  give  c_n =(1/n)Σ_(i=0) ^n  (1/(n+i)) =(1/n){(1/n)Σ_(i=0) ^n   (1/(1+(i/n)))} we have  lim_(n→+∞)   (1/n)Σ_(i=0) ^n  (1/(1+(i/n))) =∫_0 ^1   (dx/(1+x)) =[ln∣1+x∣]_0 ^1 =ln(2) ⇒  lim_(n→+∞)    c_n =0

bn=k=1n1n+kwehave1knn+1n+k2nn+1n+k2n12n1n+k1n+11n+k12nbutlimn+12n=+limn+bn=+cn=1nk=n2n1kchangementofindicekn=igivecn=1ni=0n1n+i=1n{1ni=0n11+in}wehavelimn+1ni=0n11+in=01dx1+x=[ln1+x]01=ln(2)limn+cn=0

Commented by TawaTawa last updated on 03/Sep/19

God bless you sir

Godblessyousir

Commented by Abdo msup. last updated on 04/Sep/19

you are welcome.

youarewelcome.

Answered by mind is power last updated on 03/Sep/19

a_n =Σ_(k=1) ^n (1/(√(n^2 +k)))  ∀k∈[1,n]   (1/(√(n^2 +n)))≤(1/(√(n^2 +k)))≤(1/(√(n^2 +1)))  ⇒Σ_(k=1) ^n (1/(√(n^2 +n)))≤a_n ≤Σ_(k=1) ^n (1/(√(n^2 +1)))  ⇒(n/(√(n^2 +n)))≤a_n ≤(n/(√(n^2 +1)))  ⇒lima_n =1  Σ_(k=1 ) ^n (1/(√(n+k)))=b_n   ∀k  (1/(√(n+k)))≥(1/(√(n+n)))=(1/(√(2n)))  ⇒Σ_(k=1 ) ^n (1/(√(n+k)))≥Σ(1/(√(2n)))=(n/(√(2n)))=(√(n/2))  ⇒b_n →+∞  c_n =(1/n)Σ_n ^(2n) (1/k)=(1/n_  )Σ_(k=n) ^(k=2n) (1/k)  we show Σ_(k=n) ^(k=2n) (1/k_ ) cv ⇒c_n →0  Σ_n ^(2n) (1/k)=Σ_(k=0) ^n (1/(2n−k))=(1/n)Σ_(k=0) ^n (1/(2−(k/n)))  let f(x)=(1/(2−x))  ⇒(1/n)Σ_(k=0) ^n (1/(2−(k/n)))=(1/n)Σ_(k=0) ^n f((k/n))=∫_0 ^1 f(x)dx  reiman  ∫_0 ^1 f(x)dx=∫_0 ^1 (1/(2−x))dx=[−ln(2−x)]_0 ^1 =ln(2)   ⇒Σ_(k=n) ^(2n) (1/k)→ln(2)  ⇒(1/n)Σ_(k=n) ^(k=2n) →0

an=k=1n1n2+kk[1,n]1n2+n1n2+k1n2+1k=1n1n2+nank=1n1n2+1nn2+nannn2+1liman=1k=1n1n+k=bnk1n+k1n+n=12nk=1n1n+kΣ12n=n2n=n2bn+cn=1nn2n1k=1nk=nk=2n1kweshowk=nk=2n1kcvcn0n2n1k=k=0n12nk=1nk=0n12knletf(x)=12x1nk=0n12kn=1nk=0nf(kn)=01f(x)dxreiman01f(x)dx=0112xdx=[ln(2x)]01=ln(2)k=n2n1kln(2)1nk=nk=2n0

Commented by TawaTawa last updated on 03/Sep/19

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com