All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 68022 by anaplak last updated on 03/Sep/19
Commented by anaplak last updated on 08/Sep/19
yourgivensolutionisnotrightaccordingtomyquestion..
Answered by mr W last updated on 03/Sep/19
tan(α+βi)=x+yi⇒sin(2α)+isinh(2β)cos(2α)+cosh(2β)=x+yi⇒x=sin(2α)cos(2α)+cosh(2β)⇒y=sinh(2β)cos(2α)+cosh(2β)⇒x2+y2+2xcot−12α=sin2(2α)+sinh2(2β)+2cos(2α)[cos(2α)+cosh(2β)][cos(2α)+cosh(2β)]2⇒x2+y2+2xcot−12α=1+sinh2(2β)+cos2(2α)+2cos(2α)cosh(2β)[cos(2α)+cosh(2β)]2⇒x2+y2+2xcot−12α=cosh2(2β)+cos2(2α)+2cos(2α)cosh(2β)[cos(2α)+cosh(2β)]2⇒x2+y2+2xcot−12α=[cos(2α)+cosh(2β)]2[cos(2α)+cosh(2β)]2⇒x2+y2+2xcot−12α=1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com