All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 68063 by TawaTawa last updated on 04/Sep/19
Answered by MJS last updated on 04/Sep/19
trickybuteasy(1)x3−3y2x=a+1(2)y3−3x2y=alet1−xy=z⇔y=x1−zthisleadsto(1)x3z2−2z−2(z−1)2=a+1⇒x3=(a+1)(z−1)2z2−2z−2(2)x33z2−6z+2(z−1)3=a⇒x3=a(z−1)33z2−6z+2⇒(a+1)(z−1)2z2−2z−2=a(z−1)33z2−6z+2transformingtoz3−3(2a+1)az2+6(a+1)az−2a=0letα,β,γarethesolutionsofthis⇒(z−α)(z−β)(z−γ)=0z3−(α+β+γ)z2+(αβ+αγ+βγ)z−αβγ=0⇒bycomparingfactorsαβγ=2abutαβγ=z1z2z3=(1−x1y1)(1−x2y2)(1−x3y3)=2ainourcasea=2009⇒answeris22009
Commented by TawaTawa last updated on 04/Sep/19
Godblessyousir
Commented by Learner-123 last updated on 04/Sep/19
Amazing!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com