Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 68960 by ajfour last updated on 17/Sep/19

Commented by TawaTawa last updated on 17/Sep/19

Wow, weldone sir, God bless you sir

Wow,weldonesir,Godblessyousir

Commented by ajfour last updated on 17/Sep/19

        a=b=c=d=e=−1    λ^2 −λ−1=0  ⇒ λ=((1±(√5))/2)  A=−λ^2 −λ−1=−(2+λ)      =−(((5±(√5))/2))  Q_1 =q^2 −q−1   ,  Q_2 =−q^2 −q−1  L_1 =2λq++b(λ+q)+2d      =2(((1±(√5))/2))q−((1±(√5))/2)−q−2      =±(√5)q−(((5±(√5))/2))  L_2 =2aλq+c(λ+q)+2e       =−2(((1±(√5))/2))q−((1±(√5))/2)−q−2      =−(2±(√5))q−(((5±(√5))/2))  Now  AQ_1 ^2 −L_1 L_2 Q_1 +L_1 ^2 Q_2 =0  −(((5±(√5))/2))(q^2 −q−1)^2   −[±(√5)q−(((5±(√5))/2))][−(2±(√5))q−(((5±(√5))/2))]        ×(q^2 −q−1)  +[±(√5)q−(((5±(√5))/2))]^2 (−q^2 −q−1)=0  ⇒   −2(5±(√5))(q^2 −q−1)^2     +[±2(√5)q−(5±(√5))][2(2±(√5))q+(5±(√5)]            ×(q^2 −q−1)  −[±2(√5)q−(5±(√5))]^2 (q^2 +q+1)=0  ⇒    let  5±(√5)=n    ⇒   −2n(q^2 −q−1)^2 +[−10q+2nq−n]        ×[−6q+2nq+n](q^2 −q−1)  −[−10q+2nq−n]^2 (q^2 +q+1)=0  ⇒    −2n(q^2 −q−1)^2 +   [(2n−10)(2n−6)q^2 −4nq−n^2 ]          ×(q^2 −q−1)+       −[(2n−10)^2 q^2 −2n(2n−10)q+n^2 ]           ×(q^2 +q+1) = 0  ⇒    −2n(q^4 −2q^3 −q^2 +2q+1)+   +{4(n−5)(n−3)q^4       −4q^3 [(n−5)(n−3)+n]     −q^2 [4(n−5)(n−3)+n^2 −4n]      +q(n^2 +4n)+n^2 }   −[(2n−10)^2 q^2 −2n(2n−10)q+n^2 ]         ×(q^2 +q+1)=0  ⇒  q^4 {−2n+4n^2 −32n+60          −4n^2 +40n−100}  +q^3 {4n−4n^2 +28n−60              −4n^2 +40n−100              +4n^2 −20n}  +q^2 {2n−5n^2 +36n−60            −4n^2 +40n−100           +4n^2 −20n−n^2 }      +q{−4n+n^2 +4n                      4n^2 −20n−n^2 }    (−2n+n^2 −n^2 )=0  Reducing    (6n−40)q^4 −(4n^2 −52n+160)q^3      −(6n^2 −58n+160)q^2      +4(n^2 −5n)q−2n=0  Again  dividing by 2   (3n−20)q^4 −(2n^2 −26n+80)q^3     −(3n^2 −29n+80)q^2      +(2n^2 −10n)q−n=0  to remind again   n=5±(√5)    taking n_1 =5+(√5)  n^2 (−2q^3 −3q^2 +2q)+  n(3q^4 +26q^3 +29q^2 −10q−1)+  1(−20q^4 −80q^3 −80q^2 )=0  since  n=5±(√5)  (n−5)^2 =5  n^2 −10n+20=0  n^2 =10n−20   So, i can write  n(−20q^3 −30q^2 +20q)  −20(−2q^3 −3q^2 +2q)  n(3q^4 +26q^3 +29q^2 −10q−1)+  1(−20q^4 −80q^3 −80q^2 )=0  ⇒  n(3q^4 +6q^3 −q^2 +10q−1)  +(−20q^4 −40q^3 −20q^2 −40q)=0  ⇒  n(3q^4 +6q^3 −q^2 +10q−1)    −20(q^4 +2q^3 +q^2 +2q)=0  ________________________  (3n−20)(q^4 +2q^3 +q^2 +2q)   −n(4q^2 −4q+1) = 0  _______________________  3n−20 = −5±3(√5) = N  6n−40=−10±6(√5)  −n−20 = −25∓(√5) = −((N+80)/3)  10n−40 = 10±10(√5) = 10(((N+8)/3))  ⇒     q^4 +2q^3 −(((N+80)/(3N)))q^2        +(((10N+80)/(3N)))q−(((N+20)/(3N)))=0

a=b=c=d=e=1λ2λ1=0λ=1±52A=λ2λ1=(2+λ)=(5±52)Q1=q2q1,Q2=q2q1L1=2λq++b(λ+q)+2d=2(1±52)q1±52q2=±5q(5±52)L2=2aλq+c(λ+q)+2e=2(1±52)q1±52q2=(2±5)q(5±52)NowAQ12L1L2Q1+L12Q2=0(5±52)(q2q1)2[±5q(5±52)][(2±5)q(5±52)]×(q2q1)+[±5q(5±52)]2(q2q1)=02(5±5)(q2q1)2+[±25q(5±5)][2(2±5)q+(5±5]×(q2q1)[±25q(5±5)]2(q2+q+1)=0let5±5=n2n(q2q1)2+[10q+2nqn]×[6q+2nq+n](q2q1)[10q+2nqn]2(q2+q+1)=02n(q2q1)2+[(2n10)(2n6)q24nqn2]×(q2q1)+[(2n10)2q22n(2n10)q+n2]×(q2+q+1)=02n(q42q3q2+2q+1)++{4(n5)(n3)q44q3[(n5)(n3)+n]q2[4(n5)(n3)+n24n]+q(n2+4n)+n2}[(2n10)2q22n(2n10)q+n2]×(q2+q+1)=0q4{2n+4n232n+604n2+40n100}+q3{4n4n2+28n604n2+40n100+4n220n}+q2{2n5n2+36n604n2+40n100+4n220nn2}+q{4n+n2+4n4n220nn2}(2n+n2n2)=0Reducing(6n40)q4(4n252n+160)q3(6n258n+160)q2+4(n25n)q2n=0Againdividingby2(3n20)q4(2n226n+80)q3(3n229n+80)q2+(2n210n)qn=0toremindagainn=5±5takingn1=5+5n2(2q33q2+2q)+n(3q4+26q3+29q210q1)+1(20q480q380q2)=0sincen=5±5(n5)2=5n210n+20=0n2=10n20So,icanwriten(20q330q2+20q)20(2q33q2+2q)n(3q4+26q3+29q210q1)+1(20q480q380q2)=0n(3q4+6q3q2+10q1)+(20q440q320q240q)=0n(3q4+6q3q2+10q1)20(q4+2q3+q2+2q)=0________________________(3n20)(q4+2q3+q2+2q)n(4q24q+1)=0_______________________3n20=5±35=N6n40=10±65n20=255=N+80310n40=10±105=10(N+83)q4+2q3(N+803N)q2+(10N+803N)q(N+203N)=0

Commented by TawaTawa last updated on 17/Sep/19

Is this for only   a = b = c = d = e =  − 1 ?

Isthisforonlya=b=c=d=e=1?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com