Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 69027 by rajesh4661kumar@gmail.com last updated on 18/Sep/19

Commented by mathmax by abdo last updated on 18/Sep/19

I =∫_0 ^(2π) sinxdx −∫_0 ^(2π) ∣sinx∣dx  but  ∫_0 ^(2π)  sinx dx =_(x=π+t)   ∫_(−π) ^π sin(π+t)dt =−∫_(−π) ^π  sint dt =0(odd function)  ∫_0 ^(2π) ∣sinx∣dx =_(x=π+t)   ∫_(−π) ^π ∣sint∣dt =2 ∫_0 ^π sint dt =2[−cost]_0 ^π   =2{1−(−1)} =4

I=02πsinxdx02πsinxdxbut02πsinxdx=x=π+tππsin(π+t)dt=ππsintdt=0(oddfunction)02πsinxdx=x=π+tππsintdt=20πsintdt=2[cost]0π=2{1(1)}=4

Commented by mathmax by abdo last updated on 18/Sep/19

⇒ I =0−4 =−4 .

I=04=4.

Answered by MJS last updated on 18/Sep/19

sin x −∣sin x∣= { ((0; 0≤x<π)),((2sin x; π≤x≤2π)) :}  ⇒ ∫_0 ^(2π) sin x −∣sin x∣ dx=2∫_π ^(2π) sin x dx=−2∫_0 ^π sin x dx=  =2[cos x]_0 ^π =−4

sinxsinx∣={0;0x<π2sinx;πx2π2π0sinxsinxdx=22ππsinxdx=2π0sinxdx==2[cosx]0π=4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com