Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 69572 by Ajao yinka last updated on 25/Sep/19

Answered by mind is power last updated on 25/Sep/19

Let S_0 =Σ_(k=0) ^n (_(5k) ^(5n) )   ,S_1 =Σ_(k=0) ^(n−1) (_(5k+1) ^(5n) ),S_2 =Σ_(k=0) ^(n−1) (_(5k+2) ^(5n) ),S_3 =Σ_(k=0) ^(n−1) (_(5k+3) ^(5n) ),S_4 =Σ_(k=0) ^(n−1) (_(5k+4) ^(5n) )  ⇒S_0 +S_1 +S_2 +S_3 +S_4 =Σ_(k=0) ^(5n) (_k ^(5n) )=2^(5n) ......1  Let  f=(1+e^((2iπ)/5) )^(5n) =e^(inπ) (e^((iπ)/5) +e^((−iπ)/5) )^(5n) =(−1)^n ∗2^(5n) cos^(5n) ((π/5))  f=(1+e^((2iπ)/5) )^(5n) =Σ_(k=0) ^(5n) (_k ^(5n) )e^((2ikπ)/5) =Σ_(k=0) ^n (_(5k) ^(5n) )+Σ_(k=0) ^(n−1) (_(5k+1) ^(5n) )e^((2iπ)/5) +Σ_(k=0) ^(n−1) (_(5k+2) ^(5n) )e^((4iπ)/5) +Σ_(k=0) ^(n−1) (_(5k+3) ^(5n) )e^((6iπ)/5) +Σ_(k=0) ^(n−1) (_(5k+4) ^(5n) )e^((8iπ)/5)   =S_0 +e^((2iπ)/5) S_1 +e^((4iπ)/5) S_2 +e^((−4iπ)/5) S_3 +e^((−2iπ)/5) S_4 =(−1)^n 2^(5n) cos^(5n) ((π/5))  We Tack real and Im part⇒    S_0 +cos(((2π)/5))(S_1 +S_4 )+cos(((4π)/5))(S_2 +S_3 )=(−1)^n 2^(5n) ×cos^(5n) ((π/5))...2  sin(((2π)/5))(S_1 −S_4 )+sin(((4π)/5))(S_2 −S_3 )=0...3  Now let Evaluat (1+e^((4iπ)/5) )^(5n) =(e^((2iπ)/5) (e^((2iπ)/5) +e^((−2iπ)/5) ))^(5n) =e^(2inπ) (2cos(((2π)/5)))^(5n) =2^(5n) cos^(5n) (((2π)/5))  (1+e^((4iπ)/5) )^(5n) =S_0 +e^((4iπ)/5) S_1 +e^((−2iπ)/5) S_2 +e^((2iπ)/5) S_3 +e^(−((4iπ)/5)) S_4 =2^(5n) cos^(5n) (((2π)/5))  ⇒  S_0 +cos(((4π)/5))(S_1 +S_4 )+cos(((2π)/5))(S_2 +S_3 )=2^(5n) cos^(5n) (((2π)/5))...4  and (S_1 −S_4 )sin(((4π)/5))+(S_3 −S_2 )sin(((2π)/5))=0    ......5  3&5⇔   (((sin(((2π)/5))        sin(((4π)/5)))),((sin(((4π)/5))    −sin(((2π)/5)))) )     ((((S_1 −S_4 ))),(((S_2 −S_3 ))) )= ((0),(0) )  Det [((sin(((2π)/5))       sin(((4π)/5)))),((sin(((4π)/5))  −sin(((2π)/5)))) ]≠0⇒S_1 =S_4 &S_2 =S_3   Substitution S_4 by S_1 and S_3 byS_2  Our equation Becom   { ((S_0 +2S_1 +2S_2 =2^(5n) ....a)),((S_0 +2S_1 cos(((2π)/5))+2S_2 cos(((4π)/5))=(−1)^n 2^(5n) cos^(5n) ((π/5))..b)) :}  and S_0 +2S_1 cos(((4π)/5))+2S_2 cos (((2π)/5))=2^(5n) cos^(5n) (((2π)/5))...c  after See that 4cos^2 (((2π)/5))+2cos(((2π)/5))−1=0=2cos(((4π)/5))+2cos(((2π)/5))+1    ⇒a×(1/2)+b+c=(5/2)S_0 +S_1 (1+2cos(((2π)/5))+2cos(((4π)/5)))+S_2 (1+2cos(((2π)/5))+cos(((4π)/5)))=2^(5n) ((1/2)+(−1)^n cos^(5n) ((π/5))+cos^(5n) (((2π)/5)))  ⇒(5/2)S_0 =2^(5n) ((1/2)+(−1)^n cos^(5n) ((π/5))+cos^(5n) (((2π)/5)))  ⇒S_0 =(2^(5n) /5)(1+2((−1)^n cos^(5n) ((π/5))+cos^(5n) (((2π)/5))))  ⇔Σ_(k=0) ^(5n)  (((5n)),((5k)) )=(2^(5n) /5)(1+2((−1)^n cos^(5n) ((π/5))+cos^(5n) (((2π)/5))))

LetS0=nk=0(5k5n),S1=n1k=0(5k+15n),S2=n1k=0(5k+25n),S3=n1k=0(5k+35n),S4=n1k=0(5k+45n)S0+S1+S2+S3+S4=5nk=0(k5n)=25n......1Letf=(1+e2iπ5)5n=einπ(eiπ5+eiπ5)5n=(1)n25ncos5n(π5)f=(1+e2iπ5)5n=5nk=0(k5n)e2ikπ5=nk=0(5k5n)+n1k=0(5k+15n)e2iπ5+n1k=0(5k+25n)e4iπ5+n1k=0(5k+35n)e6iπ5+n1k=0(5k+45n)e8iπ5=S0+e2iπ5S1+e4iπ5S2+e4iπ5S3+e2iπ5S4=(1)n25ncos5n(π5)WeTackrealandImpartS0+cos(2π5)(S1+S4)+cos(4π5)(S2+S3)=(1)n25n×cos5n(π5)...2sin(2π5)(S1S4)+sin(4π5)(S2S3)=0...3NowletEvaluat(1+e4iπ5)5n=(e2iπ5(e2iπ5+e2iπ5))5n=e2inπ(2cos(2π5))5n=25ncos5n(2π5)(1+e4iπ5)5n=S0+e4iπ5S1+e2iπ5S2+e2iπ5S3+e4iπ5S4=25ncos5n(2π5)S0+cos(4π5)(S1+S4)+cos(2π5)(S2+S3)=25ncos5n(2π5)...4and(S1S4)sin(4π5)+(S3S2)sin(2π5)=0......53&5(sin(2π5)sin(4π5)sin(4π5)sin(2π5))((S1S4)(S2S3))=(00)Det[sin(2π5)sin(4π5)sin(4π5)sin(2π5)]0S1=S4&S2=S3SubstitutionS4byS1andS3byS2OurequationBecom{S0+2S1+2S2=25n....aS0+2S1cos(2π5)+2S2cos(4π5)=(1)n25ncos5n(π5)..bandS0+2S1cos(4π5)+2S2cos(2π5)=25ncos5n(2π5)...cafterSeethat4cos2(2π5)+2cos(2π5)1=0=2cos(4π5)+2cos(2π5)+1a×12+b+c=52S0+S1(1+2cos(2π5)+2cos(4π5))+S2(1+2cos(2π5)+cos(4π5))=25n(12+(1)ncos5n(π5)+cos5n(2π5))52S0=25n(12+(1)ncos5n(π5)+cos5n(2π5))S0=25n5(1+2((1)ncos5n(π5)+cos5n(2π5)))5nk=0(5n5k)=25n5(1+2((1)ncos5n(π5)+cos5n(2π5)))

Commented by Ajao yinka last updated on 26/Sep/19

nice one

niceone

Commented by otchereabdullai@gmail.com last updated on 29/Sep/19

powerful

powerful

Terms of Service

Privacy Policy

Contact: info@tinkutara.com