Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 71538 by mr W last updated on 16/Oct/19

Commented by mr W last updated on 16/Oct/19

find the position of center of mass  of the parabolic arc

findthepositionofcenterofmassoftheparabolicarc

Answered by ajfour last updated on 17/Oct/19

y=Ax^2   dl=(dx)(√(1+4A^2 x^2 ))  dm=ρdl  y_(cm) =((∫_(−a) ^(  a) (Ax^2 )ρ(√(1+4A^2 x^2 ))dx)/(∫_(−a) ^(  a) ρ(√(1+4A^2 x^2 )) dx))

y=Ax2dl=(dx)1+4A2x2dm=ρdlycm=aa(Ax2)ρ1+4A2x2dxaaρ1+4A2x2dx

Answered by mr W last updated on 17/Oct/19

y=((4Hx^2 )/L^2 )=Ax^2   A=((4H)/L^2 )  let λ=AL=((4H)/L)  h_S =((∫_0 ^(L/2) Ax^2 (√(1+(2Ax)^2 ))dx)/(∫_0 ^(L/2) (√(1+(2Ax)^2 ))dx))  h_S =(1/(4A))×((∫_0 ^(L/2) (2Ax)^2 (√(1+(2Ax)^2 ))d(2Ax))/(∫_0 ^(L/2) (√(1+(2Ax)^2 ))d(2Ax)))  h_S =(1/(4A))×((∫_0 ^(AL) t^2 (√(1+t^2 ))dt)/(∫_0 ^(AL) (√(1+t^2 ))dt))  ∫_0 ^λ (√(1+t^2 ))dt=[((ln ((√(1+t^2 ))+t)+t(√(1+t^2 )))/2)]_0 ^λ   =((ln ((√(1+λ^2 ))+λ)+λ(√(1+λ^2 )))/2)  ∫_0 ^λ t^2 (√(1+t^2 ))dt=[((t(2t^2 +1)(√(1+t^2 ))−ln ((√(1+t^2 ))+t))/8)]_0 ^λ   =((λ(2λ^2 +1)(√(1+λ^2 ))−ln ((√(1+λ^2 ))+λ))/8)  h_S =(L/(4λ))×((∫_0 ^λ t^2 (√(1+t^2 ))dt)/(∫_0 ^λ (√(1+t^2 ))dt))  =(L/(4λ))×((λ(2λ^2 +1)(√(1+λ^2 ))−ln ((√(1+λ^2 ))+λ))/8)×(2/(ln ((√(1+λ^2 ))+λ)+λ(√(1+λ^2 ))))  =(L/(16))×(((2λ^2 +1)(√(1+λ^2 ))−((ln ((√(1+λ^2 ))+λ))/λ))/((√(1+λ^2 ))+((ln ((√(1+λ^2 ))+λ))/λ)))  ⇒(h_S /H)=(1/(4λ))[((2(1+λ^2 )^(3/2) )/((√(1+λ^2 ))+((ln ((√(1+λ^2 ))+λ))/λ)))−1]

y=4Hx2L2=Ax2A=4HL2letλ=AL=4HLhS=0L2Ax21+(2Ax)2dx0L21+(2Ax)2dxhS=14A×0L2(2Ax)21+(2Ax)2d(2Ax)0L21+(2Ax)2d(2Ax)hS=14A×0ALt21+t2dt0AL1+t2dt0λ1+t2dt=[ln(1+t2+t)+t1+t22]0λ=ln(1+λ2+λ)+λ1+λ220λt21+t2dt=[t(2t2+1)1+t2ln(1+t2+t)8]0λ=λ(2λ2+1)1+λ2ln(1+λ2+λ)8hS=L4λ×0λt21+t2dt0λ1+t2dt=L4λ×λ(2λ2+1)1+λ2ln(1+λ2+λ)8×2ln(1+λ2+λ)+λ1+λ2=L16×(2λ2+1)1+λ2ln(1+λ2+λ)λ1+λ2+ln(1+λ2+λ)λhSH=14λ[2(1+λ2)321+λ2+ln(1+λ2+λ)λ1]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com